Abstract:
Embodiments of a transmission signaling structure for HEW are defined to carry packet information to configure OFDMA receivers for demodulation of a specific portion of the packet and/or to configure receivers for transmission using specific OFDMA and MU-MIMO resources. In some embodiments, the specific portion of the packet comprises one or more minimum bandwidth units of one or more 20 MHz channels. Each 20 MHz bandwidth structure may comprise several minimum bandwidth units to allow each 20 MHz channel to have a have smaller granularity than 20 MHz.
Abstract:
Embodiments of a transmission signaling structure for HEW are defined to carry packet information to configure OFDMA receivers for demodulation of a specific portion of the packet and/or to configure receivers for transmission using specific OFDMA and MU-MIMO resources. In some embodiments, the specific portion of the packet comprises one or more minimum bandwidth units of one or more 20 MHz channels. Each 20 MHz bandwidth structure may comprise several minimum bandwidth units to allow each 20 MHz channel to have a have smaller granularity than 20 MHz.
Abstract:
Wireless devices, methods, and computer readable media for synchronization in a wireless local-area network. A method on a wireless communication device may include tuning to a first subchannel based on a schedule received from an access point (AP) the schedule to indicate that the HEW device is assigned to the first subchannel. The method may further include determining a target beacon receive time and tuning to a second subchannel to receive the target beacon at the target beacon receive time. The method may further include receiving the target beacon on the second subchannel and tuning back to the first subchannel. A method on an AP for synchronization may include transmitting information that indicates a target beacon receive time on a subchannel. The method may include not transmitting to a wireless communication device operating on a second subchannel for a period of time before the target beacon receive time, and transmitting a target beacon on a first subchannel at the target beacon receive time.
Abstract:
Generally discussed herein are systems and apparatuses that may include frequency multiplexing in a DownLink (DL) Multi-User (MU) Multiple Input Multiple Output (MIMO) transmission. The disclosure also includes techniques of making and using the systems and apparatuses. According to an example, an apparatus may include circuitry to transmit to a first Station (STA) on a first sub-channel a first Medium Access Control (MAC) frame or a first preamble and transmit to a second STA on a second sub-channel different than the first sub-channel, a second MAC frame or a second preamble different from the first MAC frame and the first preamble, respectively.
Abstract:
Embodiments of a transmission signaling structure for HEW are defined to carry packet information to configure OFDMA receivers for demodulation of a specific portion of the packet and/or to configure receivers for transmission using specific OFDMA and MU-MIMO resources. In some embodiments, the specific portion of the packet comprises one or more minimum bandwidth units of one or more 20 MHz channels. Each 20 MHz bandwidth structure may comprise several minimum bandwidth units to allow each 20 MHz channel to have a have smaller granularity than 20 MHz.
Abstract:
Embodiments of a transmission signaling structure for HEW are defined to carry packet information to configure OFDMA receivers for demodulation of a specific portion of the packet and/or to configure receivers for transmission using specific OFDMA and MU-MIMO resources. In some embodiments, the specific portion of the packet comprises one or more minimum bandwidth units of one or more 20 MHz channels. Each 20 MHz bandwidth structure may comprise several minimum bandwidth units to allow each 20 MHz channel to have a have smaller granularity than 20 MHz.
Abstract:
Embodiments of a system and method for acknowledging frames in a wireless network are generally described herein. In some embodiments, a wireless communication device may include a transmit/receive unit configured to receive data from a sender. In some embodiments, the transmit/receive unit may be configured to receive a schedule. The transmit/receive unit may be further configured to acknowledge (ACK) the data in a first scheduled transmission to the sender. The first scheduled transmission to the sender may be determined based on the schedule. In some embodiments, the acknowledgement may be an acknowledgement frame or a block acknowledgment frame. The scheduled transmission to the sender may be determined based on the schedule.
Abstract:
Generally discussed herein are systems and apparatuses that may include UL or DL using Multiple User (MU) Multiple Input Multiple Output (MIMO) or frequency multiplexing. The disclosure also includes techniques of using the systems and apparatuses. According to an example, a technique may include transmitting, using a plurality of spatial streams or sub-channels, a Schedule frame (SCH) to a plurality of Stations (STAs) to schedule an Uplink (UL) transmission, or transmitting, using the plurality of spatial streams or sub-channels, a Block Acknowledge (BA) to the plurality of STAs, in response to receiving a Downlink (DL) transmission from the plurality of STAs.