Abstract:
Embodiments of the present invention disclose a wireless access method, device, and system. The method includes: sending pilot signal strength or channel characteristics to a central processing node, where the pilot signal strength or channel characteristics are fed back by a user terminal within the coverage area of a wireless access node and are between the wireless access node and the corresponding user terminal; receiving access indication information of the user terminal, which is fed back by the central processing node and is determined according to the pilot signal strength or channel characteristics, where the access indication information of the user terminal includes an identifier of the wireless access node connected with the user terminal and a corresponding coding and modulation scheme; and sending the identifier of the wireless access node connected with the user terminal and the corresponding coding and modulation scheme to the corresponding user terminal.
Abstract:
A data transmission method and apparatus applied to the wireless communications field, where the method includes receiving, by a first access point (AP), cooperation configuration information from a second AP, where the cooperation configuration information of the second AP indicates basic cooperation information of the second AP to the first AP, and triggering, by the first AP based on a quantity of spatial streams allocated through cooperation, at least one cooperation station (STA) associated with the first AP to perform uplink data transmission using a quantity of spatial streams allocated by the first AP.
Abstract:
A method is described for providing extended wireless coverage. The method includes transmitting, by a station (STA), at least a first frame including one or more short training fields (STFs) and a legacy STF, each of the one or more STFs carrying a sequence of symbols that is orthogonal to a sequence of symbols carried by the legacy STF.
Abstract:
A method is described for providing extended wireless coverage. The method includes transmitting, by a station (STA), at least a first frame including one or more short training fields (STFs) and a legacy STF, each of the one or more STFs carrying a sequence of symbols that is orthogonal to a sequence of symbols carried by the legacy STF.
Abstract:
Embodiments of the present invention provide a data transmission method and apparatus, and the method includes: modulating to-be-sent information bits according to a lower order constellation diagram, and generating 4m lower order modulation symbols; multiplying a precoding matrix Q by a column vector including every four lower order modulation symbols in the 4m lower order modulation symbols, to obtain 4m to-be-sent higher order modulation symbols corresponding to a higher order constellation diagram; and respectively and correspondingly sending the 4m to-be-sent higher order modulation symbols on different carriers of two antennas. The to-be-sent higher order modulation symbols include some or all to-be-sent information bits. Therefore, the same signal can be simultaneously sent on different carriers of multiple antennas, and frequency diversity and space diversity are implemented, so that transceiving performance of data transmission is improved.
Abstract:
A data transmission method and apparatus applied to the wireless communications field, where the method includes receiving, by a first access point (AP), cooperation configuration information from a second AP, where the cooperation configuration information of the second AP indicates basic cooperation information of the second AP to the first AP, and triggering, by the first AP based on a quantity of spatial streams allocated through cooperation, at least one cooperation station (STA) associated with the first AP to perform uplink data transmission using a quantity of spatial streams allocated by the first AP.
Abstract:
An electronically steerable antenna with dual polarization is provided, as well as a method for steering such an antenna. An example antenna may include a driven patch element having dual polarity for radiating or receiving a first beam with a first polarization and radiating or receiving a second beam with a second polarization. The antenna includes a parasitic patch element separated from the driven patch element and in a parasitic coupling arrangement to the driven patch element, as well as first and second tuning elements linked to the parasitic patch element to control first and second terminating impedances of the parasitic patch element, respectively. The first terminating impedance at least partly determines a direction of the first beam, and the second terminating impedance at least partly determines a direction of the second beam.
Abstract:
It is possible to reduce the PAPR of an amplified signal communicated over bonded channels by applying different phase shifts to control fields communicated over the bonded channels. The phase shifts reduce the amount of constructive interaction between the control fields by shifting the peaks of the respective signals in the time domain. The control fields may include short training fields (STFs), channel estimation (CE) fields, or header fields communicated over bonded channels.
Abstract:
An electronically steerable antenna with dual polarization is provided, as well as a method for steering such an antenna. An example antenna may include a driven patch element having dual polarity for radiating or receiving a first beam with a first polarization and radiating or receiving a second beam with a second polarization. The antenna includes a parasitic patch element separated from the driven patch element and in a parasitic coupling arrangement to the driven patch element, as well as first and second tuning elements linked to the parasitic patch element to control first and second terminating impedances of the parasitic patch element, respectively. The first terminating impedance at least partly determines a direction of the first beam, and the second terminating impedance at least partly determines a direction of the second beam.
Abstract:
Embodiments of the present invention disclose a wireless access method, device, and system. The method includes: sending pilot signal strength or channel characteristics to a central processing node, where the pilot signal strength or channel characteristics are fed back by a user terminal within the coverage area of a wireless access node and are between the wireless access node and the corresponding user terminal; receiving access indication information of the user terminal, which is fed back by the central processing node and is determined according to the pilot signal strength or channel characteristics, where the access indication information of the user terminal includes an identifier of the wireless access node connected with the user terminal and a corresponding coding and modulation scheme; and sending the identifier of the wireless access node connected with the user terminal and the corresponding coding and modulation scheme to the corresponding user terminal.