Abstract:
Process for measuring emission for a flame in an open combustion environment. A captured image is received from each of a plurality of image capturing devices in at least one selected spectral band. Each of the plurality of image capturing devices is trained on the flame from the combustion process from a different perspective view angle. A spectral path length of the flame in the at least one spectral band is estimated from the captured images. Emitted radiance of the flame is estimated from the captured images, and a temperature of the flame is estimated from the estimated emitted radiance. A gas species concentration of the flame is estimated from the temperature of the flame and the spectral path length of the flame. Emission for the flame is measured from the gas species concentration.
Abstract:
A flare burner for burning combustible waste gases with a manifold, at least two arms, and a plurality of outlets disposed on the plurality of arms. The arms may be perpendicular to the manifold. The arms may also extend outwardly from the manifold. The arms may extend into annuli, to produce oppositely flowing exit gas. A curved dispersing surface may be disposed above the manifold. The arms may comprise a curvilinear shape or include both a linear and a curvilinear portion. The arms are unequal in length and may curve in an opposite direction from each other. The outlets are configured and spaced such that flame is short relative to size of the flare burner.
Abstract:
Process for measuring emission for a flame in an open combustion environment. A captured image is received from each of a plurality of image capturing devices in at least one selected spectral band. Each of the plurality of image capturing devices is trained on the flame from the combustion process from a different perspective view angle. A spectral path length of the flame in the at least one spectral band is estimated from the captured images. Emitted radiance of the flame is estimated from the captured images, and a temperature of the flame is estimated from the estimated emitted radiance. A gas species concentration of the flame is estimated from the temperature of the flame and the spectral path length of the flame. Emission for the flame is measured from the gas species concentration.
Abstract:
Process and apparatuses for providing a stable flame in a burner assembly are provided. In an embodiment, the apparatus includes a burner assembly comprising a burner tile having a top surface, an outside surface, a pre-mix region and defining an interior space for introduction of combustion air. A plurality of primary fuel tips are disposed in the interior space for injection of a primary fuel followed by mixing of a portion of the primary fuel and a portion of the combustion air mix in the pre-mix region to provide a primary fuel-air mixture. A plurality of secondary fuel tips are located on the top surface or mounted near the outside surface of the burner tile. A plurality of low velocity ports are located on the top surface of the burner tile for injecting the primary fuel-air mixture from the pre-mix region.
Abstract:
Example methods provided herein generate and employ three-dimensional (3D) reconstructed images of process equipment or areas within various environments in which combustion processes take places. These three-dimensional images are generated with data provided from imaging devices. The imaging devices are disposed or positioned at multiple vantage points, and in various ways, to monitor process equipment in the environment.
Abstract:
A process is provided for analyzing and visualizing conditions of a combustion process in an enclosure, and includes steps of providing continuously updated images of the enclosure for visualization of the enclosure to a user, using a viewing device having a display representing a virtual window of the enclosure; detecting a viewing angle and a viewing position of the user relative to the enclosure; illustrating an interior prospect of the enclosure relative to the viewing angle and position of the user based on the images of the enclosure; and adjusting, in realtime, the illustration of the interior prospect of the enclosure as at least one of the viewing angle and position of the user is changed for reflecting a changed view of the user.
Abstract:
A method and a process to treat coke generated from a process application. The method includes the steps of recovering a mixture of coke particles and water or steam removed from at least one process application vessel. The mixture is directed to a cyclonic separator utilizing centrifugal force and gravity. Water is separated from the mixture in the cyclonic separator. Coke particles are separated from the mixture in the cyclonic separator and are directed to a thermal oxidizer. Coke particles are oxidized and gasified in the thermal oxidizer to produce gas and reduced particulate matter. The gas and reduced particulate matter are thereafter directed to a burner in the process application vessel.
Abstract:
Methods, systems, and computer-readable and executable instructions are described herein. One method includes dividing an enclosure into a number of first field elements and a number of second field elements, determining radiance of a number of first imaging elements and a number of second imaging elements of the enclosure using images of the enclosure, estimating a radiance field and converged parameters of the number of first field elements of the enclosure using initialized parameters of the number of first field elements and the determined radiance of the number of first imaging elements, and estimating a radiance field and converged parameters of a number of second field elements of an enclosure using converged parameters of the number of first field elements, the estimated radiance of the number of first field elements, and the determined radiance of the number of second imaging elements.
Abstract:
Methods and systems for monitoring a flare burner with a camera. The methods and systems which may indicate to operators the presence or absence of one or more of smoke, flare flame, and steam plume and record those indications or measurements. Additionally, the methods and systems may confirm whether compliance with local regulations on visual emissions, smoke plume is achieved. The methods and systems automatically adjust the delivery rate of key inputs including measures assist fuel gas, purge gas, steam and/or air simultaneously to maintain or attain compliance with said local regulatory requirements. Also, methods for a machine learning process for using controller inputs to identify normal and abnormal flare states and provide visual indications and flare operation recommendations.
Abstract:
Process for measuring emission for a flame in an open combustion environment. A captured image is received from each of a plurality of image capturing devices in at least one selected spectral band. Each of the plurality of image capturing devices is trained on the flame from the combustion process from a different perspective view angle. A spectral path length of the flame in the at least one spectral band is estimated from the captured images. Emitted radiance of the flame is estimated from the captured images, and a temperature of the flame is estimated from the estimated emitted radiance. A gas species concentration of the flame is estimated from the temperature of the flame and the spectral path length of the flame. Emission for the flame is measured from the gas species concentration.