Abstract:
Disclosed are a hybrid electric vehicle, which is capable of controlling engine starting in consideration of entry into a specific area, and method of controlling the same. A method of controlling engine starting of a hybrid vehicle includes determining whether catalyst heating is necessary, determining whether a current location corresponds to a specific area associated with exhaust emissions, determining whether a first mode driving is possible, when it is determined that the current position corresponds to the specific area and the catalyst heating is necessary, and performing the first mode driving when the first mode driving is determined to be possible, or a second mode driving when the first mode driving is determined to be impossible. Here, the first mode driving is performed by using an electric motor, and the second mode driving is performed by using at least an engine.
Abstract:
A vehicle and a method for controlling the same are provided to induce inertial driving of a driver by guiding the inertial driving of the vehicle and controlling an accelerator pedal so that a pedal effort is applied to the accelerator pedal. The vehicle includes a display configured to display an object guiding the inertial driving, and a controller configured to apply a pedal effort to an accelerator pedal when guiding the inertial driving to induce the inertial driving.
Abstract:
An apparatus of estimating a vehicle weight may include: an acceleration detector detecting a longitudinal direction acceleration of the vehicle; a data detector detecting state data to estimate the vehicle weight; an engine clutch disposed between an engine and a drive motor and selectively connecting the engine to the drive motor; an integrated starter-generator for starting the engine and generating electric energy; and a vehicle controller calculating a basic vehicle weight based on an engine torque, a motor torque and the longitudinal direction acceleration detected by the acceleration detector. The vehicle controller estimates a final vehicle weight based on the basic vehicle weight and a predetermined weight when an estimating entrance condition is satisfied from the state data.
Abstract:
A DCT shifting control method of a vehicle includes: a temporary engaging step that engages an N-3 stage gear having a gear ratio larger than an N stage gear that is a currently engaged gear; a first torque switching step that starts to slip a first clutch engaged with the N-3 stage gear and disengages a second clutch engaged with the N stage gear that is the currently engaged gear; a synchronization speed adjusting step that synchronizes a speed of a power source of a vehicle with a desired input shaft speed by controlling the power source of the vehicle, disengages the N stage gear, and engages the N-2 stage gear that is the desired gear, with the slip of the first clutch maintained; and a second torque switching step that finishes shifting by disengaging the first clutch and engaging the second clutch.
Abstract:
A vehicle vibration control apparatus includes a motor for supplying driving torque; left and right drive wheels at the s ends of a drive shaft rotated by driving torque produced by a motor; ABS for controlling braking force applied with the drive wheels; and a control unit for controlling the rotational speed of the motor to follow rotational speed of the drive wheels when the ABS is operated. Thereby, vibration generated between the motor 10 and the drive wheel 22 and 24 can be minimized.
Abstract:
A method of starting an engine when a starter motor of a hybrid electric vehicle has a failure includes identifying a request for starting the engine in a state where the starter motor has the failure. When the request for starting the engine is made in the state where the starter motor has the failure, a torque or a load of an engine clutch and a pressure of the engine clutch are determined. A torque of a driving motor is set to a smaller torque between a driving motor demanded torque and a torque obtained by subtracting the torque of the engine clutch from a maximum torque of the driving motor. The engine starts with the set torque of the driving motor while controlling the engine clutch.
Abstract:
An apparatus for controlling engine idling of a hybrid electric vehicle having an engine, an electric motor and a driving motor includes: an engine target speed determination part to determine an engine target speed when an engine idle speed control is requested; an engine target torque determination part to determine an engine target torque when the engine idle speed control is requested; a speed control part to determine a control torque for maintaining an engine speed at a predetermined speed based on a difference value between the engine target speed and an engine actual speed; a power split part to determine an output torque of the electric motor and an engine compensation torque of the engine based the control torque; and a final engine torque determination part to sum the engine compensation torque and the engine target torque to determine a final engine torque.
Abstract:
A vehicle driving control method depending on a baby mode, may include, when the baby mode is activated, receiving information on a state of a vehicle seat, correcting a center state of charge (SOC) value of a battery of the vehicle based on the information on the state of the vehicle seat, determining a state of a transmission of the vehicle, and performing regenerative brake and brake pedal stroke (BPS) scale/filtering correction control or an electric vehicle (EV) mode and accelerator position sensor (APS) scale/filtering correction control based on the state of the transmission of the vehicle and the state of the vehicle seat.
Abstract:
The present disclosure relates to an apparatus for limiting vehicle speed and a method thereof. To prevent a vehicle from exceeding a speed limit to secure safety and improve fuel economy, the apparatus includes: a mode setting device allowing a driver to set any one of a safety mode, a fuel economy mode, and a hybrid mode; a safety speed input device allowing the driver to input a safety speed; one or more processors determining an economical speed on the basis of a driving environment of a vehicle; and a controller limiting a speed of the vehicle on the basis of the safety speed or the economical speed according to a mode set by the driver.
Abstract:
An apparatus for controlling a torque intervention of a hybrid vehicle includes a driving information detector for detecting a torque intervention request of the hybrid vehicle, and a controller for deriving a target motor torque and a target engine torque depending on a required torque variation when the torque intervention is requested, the target motor torque being derived so that a high voltage battery does not deviate from a state of charge (SOC) charging and discharging limit, the target motor torque limiting the target engine torque to be equal to or less than a target engine torque before the intervention request to obtain a final engine torque, and the target motor torque correcting the target motor torque to a final motor torque depending on the final engine torque.