Abstract:
A co-time, co-frequency full-duplex terminal includes a radio frequency transceiver, a power divider, a local transmitting antenna, a controllable adaptive module, and a signal mixer. The radio frequency transceiver transmits a radio frequency signal. The power divider divides the radio frequency signal into radio frequency signals in a first path and a second path. The local transmitting antenna transmits the radio frequency signal in the first path. The controllable adaptive module controls the radio frequency signal in the second path to have an amplitude equal to an amplitude of a self-interfere signal and have a phase opposite to a phase of the self-interference signal. The signal mixer mixes the radio frequency signal, after being controlled by the controllable adaptive module, with a base station signal and the self-interference signal.
Abstract:
An RFID-based smart terminal, bank card and financial management system are disclosed. The smart terminal comprises a first RFID antenna, a sensor switch and a processor. The first RFID antenna is configured to receive RFID signals. The sensor switch is configured to, when sensing the approach of an RFID signal source, activate the first RFID antenna directly or through the processor so as to enable RFID function. The smart terminal according to the present disclosure can, when sensing the approach of the RFID signal source, trigger the first RFID antenna a to be activated, and can effectively reduce the power consumption and save energy.
Abstract:
An offline communication method includes steps of: receiving, by a first TDD (Time Division Duplexing) terminal, an instruction for setting the first TDD terminal as a D2D (Device-to-Device) terminal device; interchanging, by the first TDD terminal, upstream time slots and downstream time slots thereof, and setting the first TDD terminal to be in a mode of conforming a D2D communication environment in response to said instruction; and searching, in a mode that the upstream time slots and the downstream time slots are interchanged, for a second TDD terminal which is adjacent to the first TDD terminal and is not set as a D2D mode, and establishing a connection therebetween after the second TDD terminal is searched out. By this way, communication between those offline intelligent mobile terminals within a short distance can be carried out.
Abstract:
A fast charging terminal is provided, which includes a battery, a USB interface, a switch module, a supply voltage detecting unit, a central processor, and a charging management unit. After the USB interface is connected to an intelligent charger, the switch module is switched on when the supply voltage outputted by the USB interface is within a safe supply voltage range such that the charging management unit converts the supply voltage and the supply current. The charging management unit decreases the supply voltage and increases the supply current to charge the battery.
Abstract:
A method and a system for a parallel transmission of plural types of wireless links are disclosed. The method includes: activating at least two different types of wireless links in advance; allocating transmission data to the wireless links at a signal source end according to transmission rates of the wireless links; and transmitting the allocated transmission data to the wireless links in parallel via the wireless links, so as to transmit the transmission data to a receiving end. In the method and the system, the data is transmitted via the plural wireless links in parallel, the transmission abilities of the wireless links are sufficiently utilized, and the transmission rate of the data is significantly increased. Since the wireless links are sufficiently utilized, a user's experience is enhanced.
Abstract:
A communication module and corresponding portable terminal are provided. The communication module includes an NGFF interface, a switch unit, a charge protection unit, and a delay unit, The switch unit is for controlling connection and disconnection of a power supply between a power supply end of the communication module and the power supply pins. The charge protection unit is for power charging when the switch unit is turned off, and for eliminating an impact current generated at the instant when the switch unit is turning on. The delay unit is for controlling the switch unit's delay turning on. The communication module and corresponding portable terminal are able to ensure the integrality and stability of data.
Abstract:
The present disclosure relates to a screen capable of varying a display area, a mobile terminal that incorporates an associated screen and a method of varying a display area of a screen display thereof. A screen capable of varying a display area, that is arranged on a mobile terminal, includes a main screen, a rolling screen capable of being rolled into a cylinder, a rolling screen rotating shaft for controlling rolling and/or unrolling of the rolling screen, and a rolling screen sensor for detecting a size of an unrolled area of the screen. The main screen may be arranged on a front of the mobile terminal. Two rolling screens may be included, which may be arranged at a respective side of the main screen, and one side edge of each rolling screen may be connected with the main screen.
Abstract:
The present invention discloses a communication module and a terminal. The communication module includes: a new-generation Mini-Peripheral Component Interconnect Express (PCIe) interface, a power switch, a charging unit, a delay unit and an ON/OFF control unit; the charging unit, the power switch, the delay unit and the ON/OFF control unit being separately connected to the new-generation Mini-PCIe interface, the power switch being connected to the charging unit, and the charging unit being connected to a power source end of the communication module; a universal serial bus (USB) data pin being shorter than a power source pin. The communication module and the terminal have good stability and high reliability.
Abstract:
A method and apparatus for high current charging of a smart terminal includes, when signal wires at positive and negative data cable terminals are in a short circuit status, switching a power supply to a high-current power supply, gradually incrementally increasing a charging current, and synchronously detecting a corresponding charging voltage. The method and apparatus for high current charging also includes determining if the charging current is over-current according to the charging voltage and decreasing the charging current when the charging current is over-current. Thereby, charging of a smart terminal at high current is realized, which shortens the charging time.