Abstract:
This application provides a positioning method, a network side device, a positioning node, and a positioning system, where the method includes: receiving, by a network side device, a positioning request, where the positioning request is used to trigger positioning for UE; sending configuration information to N positioning nodes according to the positioning request, receiving, by the N positioning nodes according to the configuration information, the uplink positioning reference signal sent by the UE, and obtaining N measurement results according to the uplink positioning reference signal; sending, by M positioning nodes of the N positioning nodes, M measurement results corresponding to the M positioning nodes to the network side device; and determining, by the network side device, a position of UE according to the M measurement results.
Abstract:
The present invention relates to an interleaving and de-interleaving method, an interleaver and a de-interleaver. The interleaving method includes: receiving N×M frames of data, and sequentially storing, with each frame as a unit, the N×M frames of data in storage space indicated by N×M addresses of a first storage unit; transferring the data stored in the storage space indicated by an ((X−1)×M+Y+1)th address of the first storage unit to the storage space indicated by a (Y×N+X)th address of a second storage unit; and according to an address sequence, outputting the data stored in the space indicated by the N×M addresses of the second storage unit frame by frame. The interleaving and de-interleaving solutions of the present invention have low implementation complexity, and high capacity of correcting a burst bit error.
Abstract:
An optical network-on-chip and a method and an apparatus for dynamically adjusting optical link bandwidth is presented, wherein each fixedly interconnected optical transceiver in a cluster in the optical network-on-chip is configured to establish a link between the cluster and one cluster in other n-x clusters to exchange an optical signal; and a main controller is configured to allocate x adaptively interconnected transceivers to k fixed links with the heaviest communication traffic according to a set rule and communication traffic of fixed links established by n-x fixedly interconnected optical transceivers in the cluster; and for an adaptively interconnected optical transceiver in the x adaptively interconnected optical transceivers, control the adaptively interconnected optical transceiver to establish a link, except the fixed link, between two clusters connected by the fixed link.
Abstract:
An information transmission method and device is provided. The method includes: reporting, by a UE, a CQI value to an eNB; receiving, by the UE, an MCS value sent by the eNB, where the MCS value is determined by the eNB according to the CQI value; and receiving, by the UE, PDSCH data according to the MCS value, where the CQI value and the MCS value are determined according to a second set of tables, where a modulation scheme that can be supported by the second set of tables is higher than 64QAM.
Abstract:
Embodiments of the present invention disclose a method and a node for listening. The method includes: receiving a listening reference signal in a listening pilot time slot; analyzing the listening reference signal received to obtain interference information of a node sending the listening reference signal and/or a resource configuration of a node sending the listening reference signal. By adopting the present invention, the node in the embodiments of the present invention receives the listening reference signal in the listening pilot time slot, and analyzes the received listening reference signal to obtain the interference information of a node sending the listening reference signal and/or the resource configuration of the node sending the listening reference signal, so as to listen to an interference condition and/or a resource configuration of an adjacent node.
Abstract:
An interference coordination method in TDD systems, an apparatus, and a system are disclosed in embodiments of this invention, which relate to the communication field. The method provided in the embodiment of this invention comprises: receiving by an interfered cell a uplink-downlink configuration of an interfering cell sent from the interfering cell; generating by the interfered cell interference indication information for subframes in the interfered cell in a direction opposite to the signal transmission direction in the interfering cell, according to a uplink-downlink configuration of the interfered cell and the uplink-downlink configuration of the interfering cell; sending by the interfered cell the uplink-downlink configuration of the interfered cell and the interference indication information to the interfering cell, to enable the interfering cell to perform interference coordination according to the uplink-downlink configuration of the interfered cell and the interference indication information.
Abstract:
Embodiments of the present invention provide a method for sending downlink data, a method for receiving downlink data, a base station, and a user terminal. The sending method includes modulating first downlink data into a first downlink signal by using a DFT-S-OFDM modulation mode; modulating second downlink data into a second downlink signal by using an OFDM modulation mode; and forming a downlink transmit signal from the first downlink signal and the second downlink signal in a multiplexing manner, and sending the downlink transmit signal to a user terminal. The base station includes a first generation module, a second generation module, and a first sending module. In the technical solutions of the present invention, downlink data is sent by using two modulation modes, DFT-S-OFDM and OFDM, thereby meeting requirements of different downlink data on EVM indexes.
Abstract:
The unicast communication method includes: grouping, by a base station, terminals based on channel condition levels according to measurement information of an uplink channel, so as to obtain at least two channel condition level groups; selecting a modulation-coding mode suitable for each channel condition level group, and decoding a packet to be sent to a terminal by using fountain codes, so as to obtain a fountain code block; sending the fountain code block to the terminal; receiving, by the terminal, the fountain code block of the packet sent by the base station; determining a channel condition level group to which the terminal belongs, decoding the fountain code block by using the modulation-coding mode corresponding to the channel condition level group; and sending or not sending acknowledgment feedback to the base station.
Abstract:
Embodiments of the present invention provide a method for sending downlink data, a method for receiving downlink data, a base station, and a user terminal. The sending method includes modulating first downlink data into a first downlink signal by using a DFT-S-OFDM modulation mode; modulating second downlink data into a second downlink signal by using an OFDM modulation mode; and forming a downlink transmit signal from the first downlink signal and the second downlink signal in a multiplexing manner, and sending the downlink transmit signal to a user terminal. The base station includes a first generation module, a second generation module, and a first sending module. In the technical solutions of the present invention, downlink data is sent by using two modulation modes, DFT-S-OFDM and OFDM, thereby meeting requirements of different downlink data on EVM indexes.
Abstract:
A photographing method and an electronic device are provided, so that a to-be-photographed target can continue to be tracked after the to-be-photographed target returns to a shooting image, to improve accuracy of focusing performed during photographing of a moving object. The method includes: displaying a first image including a first object and a tracking indicator that is associated with the first object, the tracking indicator indicating that the first object is a tracked target; displaying a second image that does not include the first object or the tracking indicator; displaying a third image including the first object; automatically setting the first object as the tracked target and displaying the tracking indicator associated with the first object; and automatically focusing on the first object when displaying the third image.