Abstract:
A coaxial feed-through device (feed-through) for coupling a received process connection to a storage tank (tank) including an inner electrical conductor (probe), an outer electrical conductor; and a dielectric sleeve disposed between the probe and the outer electrical conductor. The dielectric sleeve is configured to provide an upper coaxial transmission line segment (upper CTL segment) providing a substantially 50 ohm impedance and a lower coaxial transmission line segment (lower CTL segment) which includes one or more sub-segments having an impedance that is at least forty (40%) percent higher as compared to the substantially 50 ohm impedance.
Abstract:
An apparatus includes at least one processing device configured to determine an optimal pulse width for obtaining level measurements associated with material in a tank. The at least one processing device is also configured to generate a control signal that causes a transmitter of a guided wave radar (GWR) to transmit a signal having the optimal pulse width. The at least one processing device is further configured to send the control signal to the transmitter. The at least one processing device can also be configured to alter a length of the optimal pulse width in order to reduce false echoes detected by the GWR, reduce a size of an upper dead zone of the GWR, and/or detect a change of impedance to identify a fault of a process connector in the GWR.
Abstract:
In an embodiment, a benzene sensor comprises a substrate having an iodine complex disposed thereon, a radiation source configured to project UV radiation onto the complex, and a UV detector configured to detect a UV reflection off of the substrate having the iodine complex. The iodine complex can include a cyclodextrine-iodine complex such as an alpha-cyclodextrine-iodine complex, a β-cyclodextrine iodine complex, or any combination thereof.
Abstract:
A method for sensing at least one level parameter of at least one liquid in a tank. At least one bulk acoustic wave (BAW) sensor is positioned inside the tank. Electrodes of the BAW sensor are at least switchably connected to a positive feedback loop across an amplifier to provide an electronic oscillator. At least one acoustic viscosity measurement is determined from an output of the electronic oscillator, wherein the output of the electronic oscillator is different when the BAW sensor contacts the liquid as compared to when the BAW sensor contacts air. The level parameter is determined from the acoustic viscosity measurement.
Abstract:
An apparatus includes a sensor that receives a first electrical signal and provides a second electrical signal in response to the first electrical signal. The second electrical signal is based on at least one parameter monitored by the sensor. The apparatus also includes an antenna that converts first wireless signals into the first electrical signal and that converts the second electrical signal into second wireless signals. The antenna includes a substrate, conductive traces, and conductive interconnects. The conductive traces are formed on first and second surfaces of the substrate. The conductive interconnects couple the conductive traces, and the conductive interconnects and the conductive traces form at least one helical arm of the antenna. The conductive traces could be formed in various ways, such as by etching or direct printing. The conductive interconnects could also be formed in various ways, such as by filling vias in the substrate or direct printing.
Abstract:
An apparatus includes at least one processing device configured to determine an optimal pulse width for obtaining level measurements associated with material in a tank. The at least one processing device is also configured to generate a control signal that causes a transmitter of a guided wave radar (GWR) to transmit a signal having the optimal pulse width. The at least one processing device is further configured to send the control signal to the transmitter. The at least one processing device can also be configured to alter a length of the optimal pulse width in order to reduce false echoes detected by the GWR, reduce a size of an upper dead zone of the GWR, and/or detect a change of impedance to identify a fault of a process connector in the GWR.