Abstract:
A system for multi-mode breast x-say imaging which comprises a compression arm assembly for compressing and immobilizing a breast for x-ray imaging, an x-ray tube assembly, and a x-ray image receptor is provided. The system is configured for a plurality of imaging protocols and modes.
Abstract:
A method and an apparatus for estimating a geometric thickness of a breast in mammography/tomosynthesis or in other x-ray procedures, by imaging markers that are in the path of x-rays passing through the imaged object. The markings can be selected to be visible or to be invisible when the composite markings/breast image is viewed in clinical settings. If desired, the contribution of the markers to the image can be removed through further processing. The resulting information can be used determining the geometric thickness of the body being x-rayed and thus setting imaging parameters that are thickness-related, and for other purposes. The method and apparatus also have application in other types of x-ray imaging.
Abstract:
A breast imaging system leverages the combined strengths of two-dimensional and three-dimensional imaging to provide a breast cancer screening with improved sensitivity, specificity and patient dosing. A tomosynthesis system supports the acquisition of three-dimensional images at a dosage lower than that used to acquire a two-dimensional image. The low-dose three-dimensional image may be used for mass detection, while the two-dimensional image may be used for calcification detection. Obtaining tomosynthesis data at low dose provides a number of advantages in addition to mass detection including the reduction in scan time and wear and tear on the x-ray tube. Such an arrangement provides a breast cancer screening system with high sensitivity and specificity and reduced patient dosing.
Abstract:
An x-ray tube is described that includes components for increasing x-ray image clarity in the presence of a moving x-ray source by modifying focal spot characteristics, including focal spot size and focal spot position. In a first arrangement a static focal spot is moved in a direction contrary to the movement of the x-ray source so that an effective focal spot position is essentially fixed in space relative to one of the imaged object and/or detector during a tomosynthesis exposure. In a second arrangement, the size of the static focal spot is increased, and the resulting increase in tube current reduces the exposure time and concomitant blur effect. The methods may be used alone or in combination; for example an x-ray tube with a larger, moveable static focal spot will result in a system that fully utilizes the x-ray tube generator, provides a high quality image with reduced blur and, due to the decrease in exposure time, may scan the patient more quickly.
Abstract:
Methods, devices, apparatuses and systems are disclosed for performing mammography, such as utilizing tomosynthesis in combination with breast biopsy.
Abstract:
An x-ray breast imaging system comprising a compression paddle in which the compression paddle comprises a front wall and a bottom wall. The front wall is configured to be adjacent and face a chest wall of a patient during imaging and the bottom wall configured to be adjacent a length of a top of a compressed breast. The bottom wall extends away from the patient's chest wall, wherein the bottom wall comprises a first portion and a second portion such that the second portion is between the front wall and the first portion. The first portion is generally non-coplanar to the second portion, wherein the compression paddle is movable along a craniocaudal axis. The x-ray breast imaging system also comprises a non-rigid jacket releasably secured to the compression paddle, the non-rigid jacket positioned between the compression paddle and the patient.
Abstract:
The invention includes a method including the steps of obtaining a plurality of images, each of the images in the plurality having at least one corresponding region, generating a merged image, the merged image also having the corresponding region. The step of generating includes selecting an image source from the plurality of images to source image data for the corresponding region in the merged image by comparing attributes of the corresponding regions of the plurality of images to identify the image source having preferred attributes.
Abstract:
An x-ray breast imaging system comprising a compression paddle in which the compression paddle comprises a front wall and a bottom wall. The front wall is configured to be adjacent and face a chest wall of a patient during imaging and the bottom wall configured to be adjacent a length of a top of a compressed breast. The bottom wall extends away from the patient's chest wall, wherein the bottom wall comprises a first portion and a second portion such that the second portion is between the front wall and the first portion. The first portion is generally non-coplanar to the second portion, wherein the compression paddle is movable along a craniocaudal axis. The x-ray breast imaging system also comprises a non-rigid jacket releasably secured to the compression paddle, the non-rigid jacket positioned between the compression paddle and the patient.
Abstract:
The invention includes a method including the steps of obtaining a plurality of images, each of the images in the plurality having at least one corresponding region, generating a merged image, the merged image also having the corresponding region. The step of generating includes selecting an image source from the plurality of images to source image data for the corresponding region in the merged image by comparing attributes of the corresponding regions of the plurality of images to identify the image source having preferred attributes.
Abstract:
A method and an apparatus for estimating a geometric thickness of a breast in mammography/tomosynthesis or in other x-ray procedures, by imaging markers that are in the path of x-rays passing through the imaged object. The markings can be selected to be visible or to be invisible when the composite markings/breast image is viewed in clinical settings. If desired, the contribution of the markers to the image can be removed through further processing. The resulting information can be used determining the geometric thickness of the body being x-rayed and thus setting imaging parameters that are thickness-related, and for other purposes. The method and apparatus also have application in other types of x-ray imaging.