Abstract:
The invention includes a method including the steps of obtaining a plurality of images, each of the images in the plurality having at least one corresponding region, generating a merged image, the merged image also having the corresponding region. The step of generating includes selecting an image source from the plurality of images to source image data for the corresponding region in the merged image by comparing attributes of the corresponding regions of the plurality of images to identify the image source having preferred attributes.
Abstract:
A method and an apparatus for estimating a geometric thickness of a breast in mammography/tomosynthesis or in other x-ray procedures, by imaging markers that are in the path of x-rays passing through the imaged object. The markings can be selected to be visible or to be invisible when the composite markings/breast image is viewed in clinical settings. If desired, the contribution of the markers to the image can be removed through further processing. The resulting information can be used determining the geometric thickness of the body being x-rayed and thus setting imaging parameters that are thickness-related, and for other purposes. The method and apparatus also have application in other types of x-ray imaging.
Abstract:
The invention includes a method including the steps of obtaining a plurality of images, each of the images in the plurality having at least one corresponding region, generating a merged image, the merged image also having the corresponding region. The step of generating includes selecting an image source from the plurality of images to source image data for the corresponding region in the merged image by comparing attributes of the corresponding regions of the plurality of images to identify the image source having preferred attributes.
Abstract:
A method and an apparatus for estimating a geometric thickness of a breast in mammography/tomosynthesis or in other x-ray procedures, by imaging markers that are in the path of x-rays passing through the imaged object. The markings can be selected to be visible or to be invisible when the composite markings/breast image is viewed in clinical settings. If desired, the contribution of the markers to the image can be removed through further processing. The resulting information can be used determining the geometric thickness of the body being x-rayed and thus setting imaging parameters that are thickness-related, and for other purposes. The method and apparatus also have application in other types of x-ray imaging.
Abstract:
A system for multi-mode breast x-ray imaging which comprises a compression arm assembly for compressing and immobilizing a breast for x-ray imaging, an x-ray tube assembly, an x-ray image receptor, and a patient shield is provided. The system is configured for a plurality of imaging protocols and modes.
Abstract:
A 2D mammogram image is synthesized from at least one of tomosynthesis projection images and/or the tomosynthesis reconstructed image data. In a simplest form, the mammogram may be synthesized by selecting one of the tomosynthesis projection images for display as a synthesized mammogram. Other methods of synthesizing a mammogram include re-projecting and filtering projection data and/or reconstructed data. The synthesized mammogram is advantageously displayed together with at least a portion of the reconstructed data to aid in review of the reconstructed data. The present invention thus provides a familiar image which may be used to facilitate review of a tomosynthesis data set.
Abstract:
In a tomosynthesis system a static focal spot is moved in a direction opposite to and generally synchronized with the directional movement of an x-ray source and X-ray collimator blades are moved during each exposure in synchronization with the shifting of the static focal spot. The synchronized movement of the static focal spot, x-ray tube and collimator blades helps keep the effective focal spot fixed in space relative to the breast, detector or both during the entire duration of the exposure and keeps the x-ray field on the detector and breast static. The shifting collimator blades follow an oscillating pattern over the multiple x-ray exposures of a tomosynthesis scan.
Abstract:
A 2D mammogram image is synthesized from at least one of tomosynthesis projection images and/or the tomosynthesis reconstructed image data. In a simplest form, the mammogram may be synthesized by selecting one of the tomosynthesis projection images for display as a synthesized mammogram. Other methods of synthesizing a mammogram include re-projecting and filtering projection data and/or reconstructed data. The synthesized mammogram is advantageously displayed together with at least a portion of the reconstructed data to aid in review of the reconstructed data. The present invention thus provides a familiar image which may be used to facilitate review of a tomosynthesis data set.
Abstract:
A breast imaging system leverages the combined strengths of two-dimensional and three-dimensional imaging to provide a breast cancer screening with improved sensitivity, specificity and patient dosing. A tomosynthesis system supports the acquisition of three-dimensional images at a dosage lower than that used to acquire a two-dimensional image. The low-dose three-dimensional image may be used for mass detection, while the two-dimensional image may be used for calcification detection. Obtaining tomosynthesis data at low dose provides a number of advantages in addition to mass detection including the reduction in scan time and wear and tear on the x-ray tube. Such an arrangement provides a breast cancer screening system with high sensitivity and specificity and reduced patient dosing.
Abstract:
A system for multi-mode breast x-say imaging which comprises a compression arm assembly for compressing and immobilizing a breast for x-ray imaging, an x-ray tube assembly, and a x-ray image receptor is provided. The system is configured for a plurality of imaging protocols and modes.