Abstract:
An apparatus is described that include a line buffer unit composed of a plurality of a line buffer interface units. Each line buffer interface unit is to handle one or more requests by a respective producer to store a respective line group in a memory and handle one or more requests by a respective consumer to fetch and provide the respective line group from memory. The line buffer unit has programmable storage space whose information establishes line group size so that different line group sizes for different image sizes are storable in memory.
Abstract:
A shift register is described. The shift register includes a plurality of cells and register space. The shift register includes circuitry having inputs to receive shifted data and outputs to transmit shifted data, wherein: i) circuitry of cells physically located between first and second logically ordered cells are configured to not perform any logical shift; ii) circuitry of cells coupled to receive shifted data transmitted by an immediately preceding logically ordered cell comprises circuitry for writing into local register space data received at an input assigned an amount of shift specified in a shift command being executed by the shift register, and, iii) circuitry of cells coupled to transmit shifted data to an immediately following logically ordered cell comprises circuitry to transmit data from an output assigned an incremented shift amount from a shift amount of an input that the data was received on.
Abstract:
An apparatus is described. The apparatus includes an execution lane array coupled to a two dimensional shift register array structure. Locations in the execution lane array are coupled to same locations in the two-dimensional shift register array structure such that different execution lanes have different dedicated registers.
Abstract:
A method is described that includes, on an image processor having a two dimensional execution lane array and a two dimensional shift register array, repeatedly shifting first content of multiple rows or columns of the two dimensional shift register array and repeatedly executing at least one instruction between shifts that operates on the shifted first content and/or second content that is resident in respective locations of the two dimensional shift register array that the shifted first content has been shifted into.
Abstract:
A method is described that includes executing a convolutional neural network layer on an image processor having an array of execution lanes and a two-dimensional shift register. The executing of the convolutional neural network includes loading a plane of image data of a three-dimensional block of image data into the two-dimensional shift register. The executing of the convolutional neural network also includes performing a two-dimensional convolution of the plane of image data with an array of coefficient values by sequentially: concurrently multiplying within the execution lanes respective pixel and coefficient values to produce an array of partial products; concurrently summing within the execution lanes the partial products with respective accumulations of partial products being kept within the two dimensional register for different stencils within the image data; and, effecting alignment of values for the two-dimensional convolution within the execution lanes by shifting content within the two-dimensional shift register array.
Abstract:
In a general aspect, an apparatus can include image processing logic (IPL) configured to perform an image processing operation on pixel data corresponding with an image having a width of W pixels and a height of H pixels to produce output pixel data in vertical slices of K pixels using K vertically overlapping stencils of S×S pixels, K being greater than 1 and less than H, S being greater than or equal to 2, and W being greater than S. The apparatus can also include a linebuffer operationally coupled with the IPL, the linebuffer configured to buffer the pixel data for the IPL. The linebuffer can include a full-size buffer having a width of W and a height of (S−1). The linebuffer can also include a sliding buffer having a width of SB and a height of K, SB being greater than or equal to S and less than W.
Abstract:
An apparatus is described that includes an execution unit having a multiply add computation unit, a first ALU logic unit and a second ALU logic unit. The ALU unit is to perform first, second, third and fourth instructions. The first instruction is a multiply add instruction. The second instruction is to perform parallel ALU operations with the first and second ALU logic units operating simultaneously to produce different respective output resultants of the second instruction. The third instruction is to perform sequential ALU operations with one of the ALU logic units operating from an output of the other of the ALU logic units to determine an output resultant of the third instruction. The fourth instruction is to perform an iterative divide operation in which the first ALU logic unit and the second ALU logic unit operate during to determine first and second division resultant digit values.
Abstract:
An apparatus is described. The apparatus includes a program controller to fetch and issue instructions. The apparatus includes an execution lane having at least one execution unit to execute the instructions. The execution lane is part of an execution lane array that is coupled to a two dimensional shift register array structure, wherein, execution lanes of the execution lane array are located at respective array locations and are coupled to dedicated registers at same respective array locations in the two-dimensional shift register array.
Abstract:
In a general aspect, an apparatus can include image processing logic (IPL) configured to perform an image processing operation on pixel data corresponding with an image having a width of W pixels and a height of H pixels to produce output pixel data in vertical slices of K pixels using K vertically overlapping stencils of S×S pixels, K being greater than 1 and less than H, S being greater than or equal to 2, and W being greater than S. The apparatus can also include a linebuffer operationally coupled with the IPL, the linebuffer configured to buffer the pixel data for the IPL. The linebuffer can include a full-size buffer having a width of W and a height of (S−1). The linebuffer can also include a sliding buffer having a width of SB and a height of K, SB being greater than or equal to S and less than W.
Abstract:
An apparatus is described. The apparatus includes an execution lane array coupled to a two dimensional shift register array structure. Locations in the execution lane array are coupled to same locations in the two-dimensional shift register array structure such that different execution lanes have different dedicated registers.