Abstract:
The present application relates to nucleic acid encoding anti-PD-L1 antibodies, which have therapeutic use to enhance T-cell function to upregulate cell-mediated immune responses and for the treatment of T cell dysfunctional disorders, including infection (e.g., acute and chronic) and tumor immunity.
Abstract:
The present invention provides improved binding compounds capable of specifically binding Gram-positive bacteria. Binding compounds are provided that are fully human, enabling therapeutic applications in human individuals.
Abstract:
The present invention provides improved binding compounds capable of specifically binding Gram-positive bacteria. Binding compounds are provided that are fully human, enabling therapeutic applications in human individuals.
Abstract:
The present invention provides therapeutic and diagnostic methods and compositions for cancer, for example, bladder cancer. The invention provides methods of treating bladder cancer, methods of determining whether a patient suffering from bladder cancer is likely to respond to treatment comprising a PD-L1 axis binding antagonist, methods of predicting responsiveness of a patient suffering from bladder cancer to treatment comprising a PD-L1 axis binding antagonist, and methods of selecting a therapy for a patient suffering from bladder cancer, based on expression levels of a biomarker of the invention (e.g., PD-L1 expression levels in tumor-infiltrating immune cells in a tumor sample obtained from the patient) and/or based on the determination of a tumor sample subtype.
Abstract:
The invention provides methods for identifying an individuals with a disease or disorder who is less likely to respond to immunotherapy alone, the method comprising determining the presence of a stromal gene signature in a sample from the individual, said signature comprising one or more of FAP, FN1, MMP2, PDGFRB, or THY, wherein an increase in the level of expression of the one or more genes in the stroma gene signature relative to a median level identifies an individual for treatment with an immunotherapy and with a suppressive stromal antagonist. In some aspects, the invention provides methods for treating an individual displaying the stromal gene signature. In other aspects, the invention provides kits for determining the presence of a stroma gene signature in a sample from an individual.
Abstract:
The present application relates to anti-PD-L1 antibodies, nucleic acid encoding the same, therapeutic compositions thereof, and their use enhance T-cell function to upregulate cell-mediated immune responses and for the treatment of T cell dysfunctional disorders, including infection (e.g., acute and chronic) and tumor immunity.
Abstract:
The present application relates to anti-PD-L1 antibodies, nucleic acid encoding the same, therapeutic compositions thereof, and their use enhance T-cell function to upregulate cell-mediated immune responses and for the treatment of T cell dysfunctional disorders, including infection (e.g., acute and chronic) and tumor immunity.
Abstract:
The present invention provides improved binding compounds capable of specifically binding Gram-positive bacteria. Binding compounds are provided that are fully human, enabling therapeutic applications in human individuals.
Abstract:
The present invention provides therapeutic and diagnostic methods and compositions for cancer, for example, bladder cancer. The invention provides methods of treating bladder cancer, methods of determining whether a patient suffering from bladder cancer is likely to respond to treatment comprising a PD-L1 axis binding antagonist, methods of predicting responsiveness of a patient suffering from bladder cancer to treatment comprising a PD-L1 axis binding antagonist, and methods of selecting a therapy for a patient suffering from bladder cancer, based on somatic mutation levels of genes of the invention (e.g., somatic mutation levels in a tumor sample obtained from the patient).
Abstract:
The present invention provides therapeutic and diagnostic methods and compositions for bladder cancer (e.g., a locally advanced or metastatic urothelial carcinoma). The invention provides methods of treating bladder cancer, methods of determining whether a patient suffering from bladder cancer is likely to respond to treatment comprising a PD-L1 axis binding antagonist, methods of predicting responsiveness of a patient suffering from bladder cancer to treatment comprising a PD-L1 axis binding antagonist, and methods of selecting a therapy for a patient suffering from bladder cancer, based on expression levels of a biomarker of the invention (e.g., PD-L1 expression levels in tumor-infiltrating immune cells in a tumor sample obtained from the patient).