Abstract:
A method for image segmentation includes receiving an input image (102). The method further includes obtaining a deep learning model (104) having a triad of predictors (116, 118, 120). Furthermore, the method includes processing the input image by a shape model in the triad of predictors (116, 118, 120) to generate a segmented shape image (110). Moreover, the method includes presenting the segmented shape image via a display unit (128).
Abstract:
A method for determining optimized deep learning architecture includes receiving a plurality of training images and a plurality of real time images corresponding to a subject. The method further includes receiving, by a medical practitioner, a plurality of learning parameters comprising a plurality of filter classes and a plurality of architecture parameters. The method also includes determining a deep learning model based on the plurality of learning parameters and the plurality of training images, wherein the deep learning model comprises a plurality of reusable filters. The method further includes determining a health condition of the subject based on the plurality of real time images and the deep learning model. The method also includes providing the health condition of the subject to the medical practitioner.
Abstract:
A method for synchronization of a longitudinal data set from a subject includes receiving a first ensemble registration estimate having a first reference image corresponding to a first image ensemble and receiving a second image ensemble different from the first image ensemble. The method includes determining a second reference image based on the second image ensemble and the first reference image. Further, the method includes determining a second ensemble registration estimate based on the first ensemble registration estimate, the second reference image, the first image ensemble and the second image ensemble using an optimization technique. The method further includes generating a synchronized image ensemble corresponding to the first image ensemble and the second image ensemble based on the second ensemble registration estimate. The method also includes determining a medical condition of the subject by a medical practitioner based on the synchronized image ensemble.
Abstract:
The present discussion relates to the use of deep learning techniques to accelerate iterative reconstruction of images, such as CT, PET, and MR images. The present approach utilizes deep learning techniques so as to provide a better initialization to one or more steps of the numerical iterative reconstruction algorithm by learning a trajectory of convergence from estimates at different convergence status so that it can reach the maximum or minimum of a cost function faster.
Abstract:
A method for synchronization of a longitudinal data set from a subject includes receiving a first ensemble registration estimate having a first reference image corresponding to a first image ensemble and receiving a second image ensemble different from the first image ensemble. The method includes determining a second reference image based on the second image ensemble and the first reference image. Further, the method includes determining a second ensemble registration estimate based on the first ensemble registration estimate, the second reference image, the first image ensemble and the second image ensemble using an optimization technique. The method further includes generating a synchronized image ensemble corresponding to the first image ensemble and the second image ensemble based on the second ensemble registration estimate. The method also includes determining a medical condition of the subject by a medical practitioner based on the synchronized image ensemble.
Abstract:
A system and method for estimating image intensity bias and segmentation tissues is presented. The system and method includes obtaining a first image data set and at least a second image data set, wherein the first and second image data sets are representative of an anatomical region in a subject of interest. Furthermore, the system and method includes generating a baseline bias map by processing the first image data set. The system and method also includes determining a baseline body mask by processing the second image data set. In addition, the system and method includes estimating a bias map corresponding to a sub-region in the anatomical region based on the baseline body mask. Moreover, the system and method includes segmenting one or more tissues in the anatomical region based on the bias map.
Abstract:
A system and method for estimating image intensity bias and segmentation tissues is presented. The system and method includes obtaining a first image data set and at least a second image data set, wherein the first and second image data sets are representative of an anatomical region in a subject of interest. Furthermore, the system and method includes generating a baseline bias map by processing the first image data set. The system and method also includes determining a baseline body mask by processing the second image data set. In addition, the system and method includes estimating a bias map corresponding to a sub-region in the anatomical region based on the baseline body mask. Moreover, the system and method includes segmenting one or more tissues in the anatomical region based on the bias map.
Abstract:
Methods and systems for segmentation in echocardiography are provided. One method includes obtaining echocardiographic images and defining a search space within the echocardiographic images using a pair of one-dimensional (1D) profiles. The method also includes using an energy based function constrained by non-local temporal priors within the defined search space to automatically segment a contour of a cardiac structure with the 1D profiles.