Abstract:
A system is presented. The system includes an acquisition subsystem configured to obtain images corresponding to a target domain. Moreover, the system includes a processing subsystem in operative association with the acquisition subsystem and including a memory augmented domain adaptation platform configured to compute one or more features of an input image corresponding to a target domain, identify a set of support images based on the features of the input image, where the set of support images corresponds to the target domain, augment an input to a machine-learnt model with a set of features, a set of masks, or both corresponding to the set of support images to adapt the machine-learnt model to the target domain, and generate an output based at least on the set of features, the set of masks, or both. Additionally, the system includes an interface unit configured to present the output for analysis.
Abstract:
A system and method for estimating image intensity bias and segmentation tissues is presented. The system and method includes obtaining a first image data set and at least a second image data set, wherein the first and second image data sets are representative of an anatomical region in a subject of interest. Furthermore, the system and method includes generating a baseline bias map by processing the first image data set. The system and method also includes determining a baseline body mask by processing the second image data set. In addition, the system and method includes estimating a bias map corresponding to a sub-region in the anatomical region based on the baseline body mask. Moreover, the system and method includes segmenting one or more tissues in the anatomical region based on the bias map.
Abstract:
A system and method for estimating image intensity bias and segmentation tissues is presented. The system and method includes obtaining a first image data set and at least a second image data set, wherein the first and second image data sets are representative of an anatomical region in a subject of interest. Furthermore, the system and method includes generating a baseline bias map by processing the first image data set. The system and method also includes determining a baseline body mask by processing the second image data set. In addition, the system and method includes estimating a bias map corresponding to a sub-region in the anatomical region based on the baseline body mask. Moreover, the system and method includes segmenting one or more tissues in the anatomical region based on the bias map.