Abstract:
According to one aspect, a fixture for an airfoil shroud having a first end edge, a second end edge, a leading edge, a trailing edge, a radially outer side and a radially inner side with respect to a rotor axis of a bucket having the airfoil shroud is provided. The fixture includes a base plate, a first member extending from the base plate configured to locate and abut the first end edge, a second member extending from the base plate configured to locate and abut a side of a seal rail, a third member extending from the base plate configured to locate and abut the radially outer side of the airfoil shroud and a template recess formed in the base plate proximate the first end edge to define a geometry of a relief cut in the trailing edge of the airfoil shroud.
Abstract:
Methods for monitoring a components include locating a plurality of machined surface features on the component, locating at least one reference point, and measuring a plurality of first distances between the plurality of machined surface features and the at least one reference point.
Abstract:
A system and method for virtually inspecting a blade stage is disclosed. The system may include a digitizing device for obtaining a three-dimensional model of a shroud of each blade of the blade stage. A computer system may include at least one module configured to perform the following processes: extract a geometric location data of a plurality of reference points of each shroud from a three-dimensional model of a shroud of each blade of the blade stage created by digitizing using a digitizing device; generate a 3D virtual rendering of the shrouds of the blade stage based on the geometric location data and the known dimensions of the blade stage, the three-dimensional virtual rendering including a rendering of the plurality of reference points of each shroud; and inspect the blade stage using the three-dimensional virtual rendering.
Abstract:
A system for adaptively machining a shroud of a blade used in a turbomachine is provided. The system may include a computer system including a module(s) configured to: extract geometric location data from a 3D model of the shroud after use in the turbomachine, the 3D model created by digitizing using a digitizing device. The geometric location data includes geometric location data of a hard face plane of the shroud exposed to wear during turbomachine operation and of a non-worn surface adjacent to the hard face plane substantially unexposed to wear during turbomachine operation. Comparing the geometric location data of the non-worn surface from the three-dimensional model to a manufacturing model of the blade determines a change in position of the non-worn surface from use of the blade in the turbomachine. The change in position is used to modify a machining instruction used by a machining device to repair the hard face plane.
Abstract:
A system and method for virtually inspecting contact gaps of a blade stage of a turbomachine is disclosed. The system may include a digitizing device for obtaining a three-dimensional model of a shroud of each blade of the blade stage. A computer system may include at least one module configured to perform the following steps: extracting a geometric location data of a hard place plane of each shroud from the three-dimensional model; generating a three-dimensional virtual rendering of the shrouds of the blade stage based on the geometric location data and the known dimensions of the blade stage, the three-dimensional virtual rendering including a rendering of contact gaps between adjacent shrouds; and inspecting the blade stage using the three-dimensional virtual rendering.
Abstract:
Braze methods for turbine buckets include providing the turbine bucket comprising a modification surface, wherein the modification surface comprises a non-z-notch contact surface, disposing a pre-sintered preform on the modification surface and, heating the pre-sintered preform on the modification surface to bond the pre-sintered preform to the turbine bucket at the modification surface.
Abstract:
An apparatus for inspecting a turbine blade tip shroud includes a frame comprising a top surface and a bottom surface that is alignable with the turbine blade tip shroud, and, at least one z-notch inspection slot that passes through the frame from the top surface to the bottom surface and is positioned to align with at least one z-notch of the turbine blade tip shroud when the frame is aligned on the turbine blade tip shroud. The apparatus further includes a removable z-notch inspection insert comprising a cross-sectional profile substantially matching the at least one z-notch inspection slot and comprising a z-notch guide face that faces the z-notch of the turbine blade tip shroud when the removable z-notch inspection insert is passed through the z-notch inspection slot