Abstract:
According to one aspect, a fixture for an airfoil shroud having a first end edge, a second end edge, a leading edge, a trailing edge, a radially outer side and a radially inner side with respect to a rotor axis of a bucket having the airfoil shroud is provided. The fixture includes a base plate, a first member extending from the base plate configured to locate and abut the first end edge, a second member extending from the base plate configured to locate and abut a side of a seal rail, a third member extending from the base plate configured to locate and abut the radially outer side of the airfoil shroud and a template recess formed in the base plate proximate the first end edge to define a geometry of a relief cut in the trailing edge of the airfoil shroud.
Abstract:
Methods for selective localized coating deposition for a turbine component include providing the turbine component comprising an exterior surface with one or more surface features and selectively coating at least a portion of the exterior surface using a localized coating deposition apparatus based on a location of at least one of the one or more surface features.
Abstract:
A bucket tip shroud measurement fixture includes a frame extending from a first end to a second end through an intermediate portion having a first surface and an opposing second surface, a first tip shroud fixing member extending from the second surface of the frame at the first end, and a second tip shroud fixing member extending from the second surface of the frame at the second end. The first and second tip shroud fixing members are configured and disposed to retain and establish an orientation of a bucket tip shroud relative the frame. A plurality of reference points are provided on the frame. The plurality of reference points are configured and disposed to receive a coordinate measuring machine (CMM) probe.
Abstract:
Methods for determining strain on turbine components include providing a turbine component comprising a plurality of strain sensor reference features disposed along the turbine component separated from one another by a plurality of first distances at a first time, reading the plurality of strain sensor reference features at a second time to determine a plurality of second distances between the plurality of strain sensor reference features, and comparing the plurality of second distances to the plurality of first distances to determine a plurality of non-linear strain measurements between the plurality of strain sensor reference features.
Abstract:
Methods for modifying a turbine buckets include removing at least an original outer edge for an entire length of the slash face of the turbine bucket and adding a new material to the slash face to build a new outer edge, wherein the new outer edge extends the entire length of the slash face.
Abstract:
Various embodiments include approaches for monitoring turbomachine components. In various particular embodiments, a system for monitoring a component within a turbomachine includes: a borescope probe sized to pass through an opening in the turbomachine, the borescope probe for detecting a symbolic data array on the component within the turbomachine; and at least one computing device operably coupled to the borescope probe, the at least one computing device configured to: obtain image data about the symbolic data array from the borescope probe; evaluate the image data to determine whether the image data is compatible with a symbolic data array analysis program; and analyze the image data using the symbolic data array analysis program in response to determining the image data is compatible with the symbolic data array analysis program.
Abstract:
Components can comprise a substrate, an embedded strain sensor comprising at least two reference points disposed on the substrate, and an outer coating disposed over at least a portion of the embedded strain sensor.
Abstract:
Systems and methods for monitoring component deformation are provided. The component has an exterior surface. A method includes directly measuring a passive strain indicator configured on the exterior surface of the component along an X-axis, a Y-axis and a Z-axis to obtain X-axis data points, Y-axis data points, and Z-axis data points. The X-axis, Y-axis and Z-axis are mutually orthogonal. The method further includes assembling a three-dimensional profile of the passive strain indicator based on the X-axis data points, Y-axis data points and Z-axis data points.
Abstract:
A component identification system for identifying an industrial machine component in situ is disclosed herein. In an embodiment, a computer system is provided which is configured to implement a method of identifying a component of an industrial machine in situ. In particular, the computer system is configured to decode an image containing a data matrix code, and identify the data matrix code in the image. The computer system is further configured to associate the data matrix code in the image with an identified component in a database.
Abstract:
A turbine engine, bucket and method for modifying an airfoil shroud of turbine bucket is disclosed. A reference location is located in a second end edge of the airfoil shroud proximate a seal rail of the airfoil shroud. A relief cut is formed in the airfoil shroud to remove the reference location. Additionally, another reference location may be located in a first end edge of the airfoil shroud proximate the seal rail. Another relief cut may be formed in the airfoil shroud to remove the other reference location.