Abstract:
The present application relates to a method of generating a downlink frame. The method of generating the downlink frame includes: generating a first short sequence and a second short sequence indicating cell group information; generating a first scrambling sequence and a second scrambling sequence determined by the primary synchronization signal; generating a third scrambling sequence determined by the first short sequence and a fourth scrambling sequence determined by the second short sequence; scrambling the short sequences with the respective scrambling sequences; and mapping the secondary synchronization signal that includes the first short sequence scrambled with the first scrambling sequence, the second short sequence scrambled with the second scrambling sequence and the third scrambling sequence, the second short sequence scrambled with the first scrambling sequence and the first short sequence scrambled by the second scrambling sequence and the fourth scrambling sequence to a frequency domain.
Abstract:
A method of transmitting and receiving a control channel in a wireless communication system is provided. A base station allocates a data channel to a radio resource, adds start position information of the data channel into a payload of a control channel, and performs signaling for indication information on the start position information added into the payload of the control channel to a terminal. Accordingly, the legacy system and the enhanced system can efficiently transmit a control channel.
Abstract:
Provided is a method for feeding back a channel quality indicator (CQI) by a terminal. The terminal receives, from a base station, at least one reference signal through at least one of multiple beams of the base station. The terminal measures a signal-to-interference plus noise ratio (SINR) for the at least one reference signal. The terminal determines a first level corresponding to the measured SINR among levels of a first CQI. In addition, the terminal feeds back the first CQI having the first level to the base station.
Abstract:
Disclosed is a method for enhancing a small cell. A method for enhancing a small cell in a terminal applying inter-site CA includes the steps of: causing a terminal to transmit the uplink control information (UCI) of at least one of the macro cells controlled by a macro cell base station through the macro cell; and causing the terminal to transmit the uplink control information of at least one of the small cells controlled by a small cell base station through the small cell.
Abstract:
In an environment in which a macrocell and a plurality of small cells exist, a terminal receives a discovery signal from a first small cell adjacent to the terminal among the plurality of small cells. When the first small cell is in a predetermined state, the terminal measures RRM of the first small cell based on the discovery signal.
Abstract:
A method for transmitting a sounding reference signal (SRS) by a terminal in an environment in which a first carrier corresponding to a first serving cell and a second carrier corresponding to a second serving cell are aggregated is provided. The terminal receives first downlink control information (DCI) which is used for downlink scheduling and includes a first transmit power control (TPC) command through the first serving cell. The terminal controls transmit power of the SRS based on the first TPC command for transmit power control of the SRS. Next, the terminal transmits the SRS through the second serving cell using the controlled transmit power.
Abstract:
A device-to-device (D2D) communication method in a wireless mobile communication system is provided. A channel state measurement method for adaptive transmission of cellular network-based D2D communication, a data transmission/reception method of D2D communication, and a power control method for transmission power control of a D2D link in the D2D communication are provided. Specifically, cellular network-based D2D communication methods optimized for a Third Generation Partnership Project (3GPP) Long Term Evolution (LTE) system are provided. The above-described methods are also applicable to various cellular mobile communication systems as well as the 3GPP LTE system.
Abstract:
Provided is a data transmission system using a carrier aggregation. The data transmission system may assign a radio resource based on a correspondence relationship between a downlink and an uplink, and may transmit data using the assigned radio resource.
Abstract:
A beam fingerprint-based positioning method, performed by a communication node located in a target space, may include: performing measurements on positioning signals transmitted from at least one reference node through a plurality of directional beams in a beam sweeping scheme; transmitting a result of the measurements to a central node; and receiving information on a position of the communication node from the central node.
Abstract:
A method of a first communication node may comprise: generating a first intermediate base sequence consisting of M elements based on first, second and third binary sequences, wherein M is a natural number; generating a second intermediate base sequence consisting of M elements by modifying the first intermediate base sequence; generating a base sequence consisting of 2M elements based on distributed concatenation of the first intermediate base sequence and the second intermediate base sequence; mapping modulation symbols generated by modulating the base sequence to 2 (M+1) subcarriers; and transmitting a signal consisting of the mapped modulation symbols to a second communication node.