Abstract:
Disclosed herein is an intra prediction method including: deriving neighbor prediction mode information from a left neighbor prediction mode and an upper neighbor prediction mode; deriving an intra prediction mode for a decoding target unit by using the derived neighbor prediction mode information; and performing intra prediction on the decoding target unit based on the intra prediction mode. According to exemplary embodiments of the present invention, image encoding/decoding efficiency can be improved.
Abstract:
An intra prediction method according to the present invention comprises the following steps: deriving neighboring prediction mode information from a left neighboring prediction mode and a top neighboring prediction mode; deriving an intra prediction mode for a target unit to be decoded, using the derived neighboring prediction mode information; and performing intra prediction for the target unit to be decoded, based on the intra prediction mode. According to the present invention, video encoding/decoding efficiency may be improved.
Abstract:
The present invention relates to correcting errors of multiple stream-based 3D images. The present invention comprises a 3D image synchronizing unit which synchronizes a first image and a second image consisting the 3D image; a 3D image correcting unit which detects an error block in the first image, searches a corresponding block in the second image, and corrects the error block on the basis of the block information of said corresponding block; and a compositing unit which composites the corrected first image and the second image to generate a 3D stereoscopic image. According to the present invention, bit errors occurring when transmitting multiple stream of 3D image can be corrected, providing better quality of 3D images. Also, error correction can be easily performed by using the method of the present invention without complicated calculations.
Abstract:
An apparatus for determining a received signal level of a radio wave in a ray-tracing wave propagation environment includes a reception unit configured to receive the radio wave; and an analyzing unit configured to determine the received signal level of the radio wave in the ray-tracing wave propagation environment. Further, the analyzing unit is configured to analyze a correlation of the height and altitude of a surface roughness that recognizes the surface of a surrounding obstacle depending on the length of wavelength in the course of delivery of a received signal of the radio wave and analyze precisely the scattering of the received signal depending on the surface roughness to determine the received signal level of the radio wave when determining the received signal level.
Abstract:
Provided are an image encoding method and device. When carrying out image encoding for a block within a slice, at least one block in a restored block of the slice is set as a reference block. When this is done, the encoding parameters of the reference block are distinguished, and the block to be encoded is encoded adaptively based on the encoding parameters.
Abstract:
Provided are an image encoding method and device. When carrying out image encoding for a block within a slice, at least one block in a restored block of the slice is set as a reference block. When this is done, the encoding parameters of the reference block are distinguished, and the block to be encoded is encoded adaptively based on the encoding parameters.
Abstract:
An intra prediction method according to the present invention comprises the following steps: performing a directional prediction using at least one of a neighboring pixel of a current block and a left upper corner pixel positioned at a left upper corner of the current block so as to obtain a first prediction value for the current block; obtaining a second prediction value for the current block using the reference sample positioned in the current block; and weighted summing the first prediction value and the second prediction value using a weighting matrix so as to obtain a final prediction value for the current block. According to the present invention, image encoding/decoding efficiency may be improved.
Abstract:
Provided is a transform coefficient scan method including: determining a reference transform block for a decoding target block; deriving a scanning map of the decoding target block using scanning information of the reference transform block; and performing inverse scanning on a transform coefficient of the decoding target block using the derived scanning map. According to the present invention, picture encoding/decoding efficiency may be improved.
Abstract:
The present invention relates to image processing, and more particularly, to a video coding/decoding method using a clipped motion vector and an apparatus thereof. An embodiment of the present invention relates to a method of decoding an image. The method includes clipping a motion vector of a reference picture in a predetermined dynamic range to generate a clipped motion vector, storing the clipped motion vector in a buffer, deriving a motion vector of a coding treeblock using the motion vector stored in the buffer, and performing inter prediction decoding process using the motion vector of the coding treeblock. According to the exemplary embodiment of the present invention, a size of a memory required for storing motion vectors may be reduced.
Abstract:
Provided are an image encoding method and device. When carrying out image encoding for a block within a slice, at least one block in a restored block of the slice is set as a reference block. When this is done, the encoding parameters of the reference block are distinguished, and the block to be encoded is encoded adaptively based on the encoding parameters.