Abstract:
A method of determining at least one behavioral parameter of a wearer for designing an ophthalmic eyeglass lens includes: a) acquiring a first data set from a first representation of the head of the wearer in three dimensions; b) determining the relative position in space of at least three particular points of the head based on the data set; c) acquiring a second data set from a second representation of the head in a natural posture, including at least one image of each of the three particular points; d) identifying the image of each of the particular points from step b) on the representation of step c); e) deducing information relating to the position and/or to the orientation of the head of the wearer during the determination of the second representation from this identification; and f) determining the behavioral parameter of the wearer based on the information from step e).
Abstract:
Disclosed is a method for measuring the refraction of an individual by a refraction measuring appliance, including: an initial step of determining at least one initial value of a visuo-postural parameter of the individual; a step of processing the initial value in order to deduce at least one initial value of a regulating parameter of the refraction measuring appliance, the regulating parameter being associated with the visuo-postural parameter; a step of regulating the refraction measuring appliance according to the initial value of the regulating parameter; and a step of measuring the refraction of the individual by the measuring appliance regulated in this way. Also disclosed is a method for the optical design of an ophthalmic lens, and to a pair of glasses including such a lens.
Abstract:
A method for determining an optical system of a personalized progressive lens for a given wearer including: a) providing a mean direction of gaze determined for the wearer in a reference frame tied to the head of the wearer; b) determining a target value for at least one optical design parameter as a function of the mean direction of gaze determined in a); c) calculating the optical system of the progressive lens by an optical optimization procedure on the basis of target values, wherein the target value of each optical design parameter as a function of the mean direction of gaze determined in b) is a target value.
Abstract:
A device for testing visual behavior of a person, including: an active display configured to display at least one visually predominant target in a plurality of positions that are variable over time and that are aligned along at least one line or column, and a unit for controlling the display. The unit is programmed so that consecutive display positions of the target follow, over time, a visual tracking protocol.
Abstract:
An instrument has a light-emitting and light-receiving assembly including an image capture unit and image processing unit; a backscatterer and an opening provided therein; a support for receiving an ophthalmic lens between the assembly and backscatterer, the assembly, support and backscatterer placed so that an incident light beam traverses the lens, strikes the backscatterer, returns and re-traverses the lens to arrive at the capture unit; the light-receiving assembly, the support, backscatterer and opening configured so that the assembly receives light from the beam; and the opening and a drive device for cyclically driving and making the backscatterer perform an identical movement in each cycle, configured so that a fixed zone opposite the backscatterer includes at least one part of which, over the course of a cycle, every point is at times perpendicular to the opening and at times perpendicular to a solid portion part of the backscatterer.
Abstract:
Disclosed is a method for determining at least one visual behavior parameter of a person. The method includes the following steps: a step of encouraging the person to perform a visual test during which he observes at least one target position, a step of measuring an item of data that is representative of at least one viewing direction of the person during the visual test, a step of determining a reference viewing direction on the basis of the representative data measured, and a step of positioning, relative to the reference viewing direction, at least one measured target position that is determined, in a reference marker associated with the head of the person, on the basis of the data that is representative of the viewing direction of the person measured during the visual test.
Abstract:
An optical instrument includes: a collimation element (30) having a focal distance; a point light source (25-27) with a wavelength of between 700 and 1000 nm and a diameter less than or equal to a fiftieth of the focal distance, placed at a first focus of the collimation element, so that the light becomes a beam (20) of collimated light; a backscatterer (12); a support for receiving an ophthalmic lens (14), with the collimation element, support and backscatterer being placed so that the beam of collimated light encounters the lens location (15) where micro-etching is present; an image analyzing element (32) and an image capture element (31) linked to the analyzing element and including an objective lens (35) placed at a second focus of the collimation element, which objective lens is developed to provide the analyzing element with images of the backscatterer in order to identify and locate the micro-etching.
Abstract:
Disclosed is a device for measuring ocular refraction and a geometric-morphological parameter of an individual, including: a gaze-stimulating target placed so as to stimulate the gaze of the individual in a posture associated with a proximity value and a sight axis; an illuminating system able to generate at least one illuminating beam in the direction of the eyes of the individual; an image-capturing system; and a computer able to receive at least one first image captured by the image-capturing system. According to the invention, the image-capturing system is able to acquire an image of part of the face surrounding the eyes of the individual, and the computer is able to extract, from the acquired image, a first measurement of a glazing parameter and a first measurement of objective ocular refraction by refraction of the illuminating beam on the eyes of the individual in the given posture.