Abstract:
A display device includes a polymer layer including dichroic dyes and a liquid crystal, which is not mixed or reacted with the polymer layer, dispersed in the polymer layer. The polymer and the liquid crystal have different refractive indices from each other.
Abstract:
Disclosed is an optical modulator. An optical modulator comprises a substrate, an upper transparent electrode on the substrate, a partition wall providing a chamber between the substrate and the upper transparent electrode, an optical modulation member provided in the chamber and disposed on the substrate, and an electrolyte filling the chamber and including a first metal in an ionic state. The optical modulation member comprises a reflection layer on the substrate, and a lower transparent electrode on the reflection layer.
Abstract:
Provided is an electrochromic device and a method for driving the electrochromic device, the electrochromic device including a first electrode, a first electrochromic layer, an electrolyte layer, a second electrochromic layer, and a second electrode which are laminated in sequence, at least one selected from among the group consisting of the first and second electrochromic layers and the electrolyte layer including scattering particles, and the electrochromic device further including an additional layer that contains the scattering particles and is disposed between the electrolyte layer and the first or second electrochromic layer.
Abstract:
Disclosed are dual mode display devices and methods of manufacturing the same. The dual mode display device may include a first substrate, a first electrode on the first substrate, a second substrate opposite to the first electrode and the first substrate, a second electrode between the second substrate and the first electrode, a third electrode between the first electrode and the second electrode, an optic switching layer between the first electrode and the third electrode, and an organic light-emitting layer between the second electrode and the third electrode.
Abstract:
Provided is a dual-mode display including a substrate, and a plurality of sub pixels on the substrate. Each of the sub pixels may include an emissive device, a reflective optical filter provided on a surface of the emissive device, and an optical shutter provided on other surface of the emissive device.
Abstract:
An apparatus which analyses a depth of a holographic image is provided. The apparatus includes an acquisition unit that acquires a hologram, a restoration unit that restores a three-dimensional holographic image by irradiating the hologram with a light source, an image sensing unit that senses a depth information image of the restored holographic image, and an analysis display unit that analyzes a depth quality of the holographic image, based on the sensed depth information image, and the image sensing unit uses a lensless type of photosensor.
Abstract:
Provided is a liquid crystal display device and a method for operating the liquid crystal display device. In the liquid crystal display device including a plurality of pixels, one pixel of the plurality of pixels includes a first sub pixel and a second sub pixel, which are adjacent to each other. The one pixel includes a first substrate, a first electrode provided on the first substrate, metamaterial layers provided on the first electrode, wherein the metamaterial layers include a first metamaterial layer within the first sub pixel and a second metamaterial layer within the second sub pixel, a liquid crystal layer provided on the first and second metamaterial layers, a second electrode provided on the liquid crystal layer, and a second substrate provided on the second electrode. The first and second metamaterial layers include metamaterials having properties different from each other, respectively.
Abstract:
Provided is a pixel circuit. The pixel circuit includes a conversion element forming a voltage of an input level at a first node, a first transistor adjusting the voltage of the first node to a first level in response to a first signal received at a first time interval, a first capacitive element forming a voltage at a second node based on the voltage of the first node, a second transistor adjusting a level of the voltage of the second node to a second level in response to the first signal, a third transistor forming a voltage at a third node, a fourth transistor outputting a current in response to a second signal received in a second time interval, and a. fifth transistor adjusting the voltage of the third node to a third level in response to a third signal received in a third time interval.
Abstract:
Provided is a pressure sensitive display device including a sensing substrate, a reaction substrate provided on the sensing substrate, and spacers provided between the sensing substrate and the reaction substrate to space the sensing substrate apart from the reaction substrate. Here, the sensing substrate includes a flexible substrate and a touch electrode provided on one surface of the flexible substrate, which faces the reaction substrate. The reaction substrate includes a transparent substrate, a transparent electrode provided on one surface of the transparent substrate, which faces the sensing substrate, and a light emitting layer disposed on the transparent electrode.
Abstract:
Provided is stretchable electronics. The stretchable electronics includes stretchable substrate, first support patterns disposed on a first surface of the stretchable substrate, and output devices disposed on the first patterns, respectively. The first support patterns are arranged in a first direction and a second direction, which are parallel to an extension direction of the substrate, and each of the output devices generates an output stimulation.