Abstract:
A solid-state image sensor including a plurality of pixels each including a photoelectric conversion element formed on a semiconductor. The solid-state image sensor includes a distance measurement pixel including a plurality of photoelectric conversion elements configured to acquire signals for distance measurement and included in at least a part of the plurality of pixels, and a control electrode disposed on the semiconductor via an insulating film, wherein the control electrode is configured to control positions or shapes of the photoelectric conversion elements by applied voltages, while the distance measurement pixel maintains the number of the plurality of photoelectric conversion elements.
Abstract:
A solid state image sensor has a plurality of ranging pixels on the imaging area thereof and each of the ranging pixels has a photoelectric conversion section and an optical waveguide arranged at the light-receiving side of the photoelectric conversion section. The optical waveguide has at least two optical waveguides including a first optical waveguide arranged at the light-receiving side and a second optical waveguide arranged at the side of the photoelectric conversion section in the direction of propagation of light. The core region of the first optical waveguide shows a refractive index lower than the refractive index of the core region of the second optical waveguide and is designed so as to show a high light-receiving sensitivity relative to light entering at a specific angle.
Abstract:
A distance measurement apparatus includes an imaging lens configured to form an image of an object on an imaging plane, a solid-state image sensor configured to acquire an image based on light flux passing through a plurality of areas different from each other in an exit pupil of the imaging lens, and a calculation unit configured to calculate a distance based on a signal acquired from the solid-state image sensor. The calculation unit includes a processing unit configured to acquire a first signal in a first imaging condition by using the solid-state image sensor, a processing unit configured to acquire a second signal in a second imaging condition different from the first imaging condition by using the solid-state image sensor, and a processing unit configured to calculate a base length and a distance based on the first signal and the second signal.
Abstract:
A solid-state image pickup element includes a pixel and a signal detecting unit. The pixel has at least two photoelectric conversion units including a first photoelectric conversion unit and a second photoelectric conversion unit in a semiconductor. The first photoelectric conversion unit has a higher impurity density than the second photoelectric conversion unit and is configured to allow the transfer of a charge occurring in the second photoelectric conversion unit to the first photoelectric conversion unit. The signal detecting unit commonly detects the charge amount in the first photoelectric conversion unit and the second photoelectric conversion unit.
Abstract:
An information processing apparatus includes an acquisition unit acquiring a first image and a second image, the first image being an image of a target area in an initial state, the second image being an image of the target area where a first object conveyed from a supply area is placed, an estimation unit estimating one or more second areas in the target area, based on a feature of a first area estimated using the first image and the second image, the first area being where the first object is placed, the one or more second areas each being an area where an object in the supply area can be placed and being different from the first area. A control unit controls a robot to convey a second object different from the first object from the supply area to any of the one or more second areas.
Abstract:
To appropriately perform long-sized imaging even in the case of performing long-sized imaging using different types of radiation detectors, a radiography system for generating a long-sized image by combining a plurality of items of image data obtained from a plurality of radiation detectors 120, 122, and 124 includes a determination unit 202, which determines whether or not long-sized imaging is possible on the basis of identification information and position information of the plurality of radiation detectors 120, 122, and 124.
Abstract:
To convey an object container so as to prevent the content thereof from being diffused, there is provided an information controlling apparatus which controls a robot conveying the object container, and comprises: a 3D shape measuring unit configured to measure the 3D shape of the object container; a state measuring unit configured to measure the state of the content of the object container; a conveying method determining unit configured to determine the conveying method for the object container by the robot based on the 3D shape measured by the 3D shape measuring unit and the state measured by the state measuring unit; and an action planning unit configured to control the action of the robot based on the conveying method determined by the conveying method determining unit.
Abstract:
A radiographing apparatus usable for stitch imaging, includes a radiation sensor configured to acquire a radiographic image signal or radiographic image signals by detecting radiation, a readout circuit configured to read out the radiographic image signal(s), a communication circuit configured to transmit a digital radiographic image based on the radiographic image signal(s) to an external apparatus, a generation unit configured to generate a preview image, based on the radiographic image signal(s), that is smaller in data amount than the digital radiographic image, and a control unit configured to cause the communication circuit to start transmitting the preview image after the readout circuit reads out the radiographic image signal(s), and after completion of the transmission of the preview image, restrict transmission of an image that contains data uncontained in the preview image among data pieces in the digital radiographic image until a specific signal is received from the external apparatus.
Abstract:
To convey an object container so as to prevent the content thereof from being diffused, there is provided an information controlling apparatus which controls a robot conveying the object container, and comprises: a 3D shape measuring unit configured to measure the 3D shape of the object container; a state measuring unit configured to measure the state of the content of the object container; a conveying method determining unit configured to determine the conveying method for the object container by the robot based on the 3D shape measured by the 3D shape measuring unit and the state measured by the state measuring unit; and an action planning unit configured to control the action of the robot based on the conveying method determined by the conveying method determining unit.
Abstract:
An information processing apparatus that inspects a state of a target object using distance information obtained by measuring the target object includes an acquisition unit configured to acquire position information indicating a position of a part of the target object based on the distance information, and an output unit configured to output, in a case where a position of a part of the target object does not satisfy a predetermined condition, based on the position information and the condition, information regarding a direction in which the target object is to be moved from a current state of the target object to a state satisfying the condition.