Abstract:
Aspects of a method and system for mitigating interference among femtocells via intelligent channel selection are provided. In this regard, signals which may interfere with cellular communications between a femtocell and a cellular communication device may be detected via the femtocell. Based on the detection, the femtocell may be configured to transmit and/or receive signals on one or more frequencies and/or channels. The one or more frequencies and/or channels may be determined in the femtocell and/or in a network management entity. Detecting interfering signals and configuring the one or more femtocells may occur periodically, upon installation of a femtocell, upon power-up of a femtocell, and/or upon command from a network administrator. The results of the detection may be communicated to one or more other femtocells and/or to a network management entity.
Abstract:
Aspects of a method and system for dynamic adjustment of power, antenna direction and frequencies in a femtocell network are provided. In this regard, a communication system may comprise a plurality of femtocells, one or more base stations, and a femtocell management entity that coordinates operation of the plurality of femtocells. One or more parameters may be communicated from one of the plurality of femtocells and/or one or more base stations to the femtocell management entity. The femtocell management entity may be enabled to utilize the one or more parameters to determine configuration information for one of the plurality of femtocells and/or for one or more remaining ones of the plurality of femtocells. One of the plurality of femtocells may be enabled to receive the determined configuration information from the femtocell management entity. One of the plurality of femtocells may be configured utilizing the received determined configuration information.
Abstract:
A multiservice communication device includes a plurality of transceivers that wirelessly transceive data with a corresponding plurality of networks in accordance with a corresponding plurality of network protocols. A control channel transceiver transceives control channel data with a remote management unit including local control data sent to the management unit and remote control data received from the management unit. A processing module processes the remote control data and generates a least one control signal in response thereto, the at least one control signal for adapting at least one of the plurality of transceivers based on the remote control data.
Abstract:
Certain aspects of the method may comprise receiving a plurality of spatially multiplexed communication signals from a plurality of transmit antennas at a base station. A plurality of vectors of baseband combined channel estimates may be generated based on phase rotation of the received plurality of spatially multiplexed communication signals. A plurality of pre-equalization weights may be generated based on the generated plurality of vectors of baseband combined channel estimates. The received plurality of spatially multiplexed communication signals may be modified based on the generated plurality of pre-equalization weights. At least a portion of the generated plurality of pre-equalization weights may be fed back to the base station for modifying subsequently transmitted spatially multiplexed communication signals which are transmitted from at least a portion of the plurality of transmit antennas at the base station.
Abstract:
Aspects of a method and system for controlling data distribution via cellular communications with an integrated femtocell and set-top-box (IFSTB) device are provided. In this regard, a cellular enabled communication device may detect when it is within cellular communication range of a femtocell. Upon detection of the femtocell, the cellular enabled communication device may communicate instructions to a content source instructing the content source to deliver multimedia content to the femtocell. In instances that multimedia content is already being delivered to the cellular enabled communication device prior to the detection, the instructions from the cellular enabled communication device may instruct the content source to redirect the multimedia content to the femtocell. In this regard, the multimedia content may be delivered from the content source to the cellular enabled communication device via the femtocell. The femtocell may deliver at least a portion of the multimedia content to other communication devices.
Abstract:
Various aspects of a method and a system for a range reduction scheme for user selection in a multiuser MIMO downlink transmission are presented. Aspects of a system for range reduction may comprise a range reduction processor that determines a plurality of channel measurements corresponding to a plurality of signals. The range reduction processor may compute a plurality of channel capacities based on the channel measurements corresponding to a subset of the plurality of signals having channel gain that is greater than a remaining portion of the plurality of signals. Aspects of a method may comprise determining a plurality of channel measurements corresponding to a plurality of signals, and computing a plurality of channel capacities based on said channel measurements corresponding to a subset of the plurality of signals having a channel gain that is greater than a remaining portion of the plurality of signals.
Abstract:
Mixed mode operations within multiple user, multiple access, and/or MIMO wireless communications. Certain communication systems can include wireless communication devices of various capabilities therein (e.g., IEEE Task Group ac (TGac VHT), IEEE 802.11 amendment TGn, IEEE 802.11 amendment TGa, and/or other capabilities, etc.). In one manner of classification, wireless communication devices having legacy and newer/updated capabilities may inter-operate with one another, operate within a common region, and/or communicate via a common access point (AP). Coordination of such wireless communication devices (e.g., legacy and newer/updated) provides for their respective operation on a same set of clusters in accordance with various operational modes including: (1) time dividing medium access between the wireless communication devices of various capabilities, (2) assigning primary cluster(s) for a first capability set and assigning non-primary cluster(s) for a second capability set, etc., and/or (3) any combination of operational modes (1) and (2).
Abstract:
A communication device includes a processor configured to generate OFDMA packets using various OFDMA packet structures and to transmit such OFDMA packets, via a communication interface, to at least one other communication device. The processor is also configured to receive, interpret, and process such OFDMA packets. One example of an OFDMA packet includes common SIG for two or more other wireless communication devices modulated across all sub-carriers of the OFDMA packet. The common SIG is followed by first SIG and first data for a first other wireless communication device modulated across first subset of the sub-carriers of the OFDMA packet and is also followed by second SIG and second data for a second other wireless communication device modulated across second subset of the sub-carriers of the OFDMA packet. Another example of an OFDMA packet includes the common SIG followed directly by first data and second data modulated as described above.
Abstract:
A multi-user super-frame (MU-SF), as controlled by a MU-SF owner, is used to govern the manner by which various wireless communication devices have access to the communication medium. When various wireless communication devices operate within a wireless communication system, communication medium access can be handled differently for wireless communication devices having different capabilities. Per the MU-SF, those having a first capability may get medium access in accordance with a first operational mode (e.g., carrier sense multiple access/collision avoidance (CSMA/CA)), while those having a second capability may get medium access in accordance with a second operational mode (e.g., scheduled access). The respective durations for each of the first operational mode and the second operational mode within various MU-SFs need not be the same; the respective durations thereof may be adaptively modified based on any number considerations.
Abstract:
Multi-user null data packet (MU-NDP) sounding within multiple user, multiple access, and/or MIMO wireless communications. Within communication systems including multiple wireless communication devices (e.g., one or more APs, STAs, etc.), channel sounding of the selected communication links between the various wireless communication devices is performed. A MU-NDP announcement frame is transmitted to and received by various wireless communication devices indicating which of those wireless communication devices (e.g., one, some, or all) are being sounded. Then, respective NDP sounding frames are transmitted via the communication links corresponding to those wireless communication devices (e.g., one, some, or all) are being sounded, and sounding feedback signals are subsequently sent back to the original transmitting wireless communication device. In some instances, after transmission of the MU-NDP announcement frame, a clear to send (CTS) is sent from at least one of the wireless communication devices thereby precipitating the transmission of the NDP sounding frames.