Abstract:
Short training field (STF) for use within single user, multiple user, multiple access, and/or MIMO wireless communications. An STF design as is made such that the power associated with the tone indices at the edges of the STF design is relatively less than the power associated with the tone indices more centrally located within the STF design. Also, when multiple respective operational modes are supported (e.g., 1 MHz and 2 MHz), the respective STF designs corresponding to those respective operational modes have a great deal of similarity. For example, the respective STF designs for different respective operational modes may have certain common STF tone indices among those respective STF designs.
Abstract:
A communication device includes a processor configured to generate OFDMA packets using various OFDMA packet structures and to transmit such OFDMA packets, via a communication interface, to at least one other communication device. The processor is also configured to receive, interpret, and process such OFDMA packets. One example of an OFDMA packet includes common SIG for two or more other wireless communication devices modulated across all sub-carriers of the OFDMA packet. The common SIG is followed by first SIG and first data for a first other wireless communication device modulated across first subset of the sub-carriers of the OFDMA packet and is also followed by second SIG and second data for a second other wireless communication device modulated across second subset of the sub-carriers of the OFDMA packet. Another example of an OFDMA packet includes the common SIG followed directly by first data and second data modulated as described above.
Abstract:
A wireless communication device includes communication interface configured to receive and transmit signals and a processor configured to generate and process such signals. The communication interface of the wireless communication device is configured to receive a first signal from a first other wireless communication device, and the processor of the wireless communication device is configured to process the first signal to determine one or more concurrent transmission parameters. The processor of the wireless communication device is configured to generate the second signal based on the one or more concurrent transmission parameters and direct the communication interface to transmit the second signal to a second other wireless communication device during receipt of the first signal from the first other wireless communication device. The wireless communication device may be configured to make such concurrent transmissions based on one or more considerations such as the power level of the first signal.
Abstract:
Explicit feedback format within single user, multiple user, multiple access, and/or MIMO wireless communications. A beamformer provides a first communication to a beamformee, and based thereon, the beamformee may ascertain certain characteristics associated with the type and format of feedback to be provided to the beamformee via a second communication from the beamformee to the beamformer. For example, the first communication may include indication of a current operational mode, such as whether it is in accordance with single-user multiple input multiple output (SU-MIMO) or multi-user multiple-input-multiple-output (MU-MIMO). Also, the first communication may indicate a requested steering matrix's rank to be employed in accordance with subsequent beamforming by the beamformer. Also, additional information such as that pertaining to per-tone SNR values for each respective space-time stream, per-tone or per-sub-band eigen-values, the particular channel width being employed (e.g., 20, 40, 80, or 160 MHz), etc. may be included within the second communication.
Abstract:
Pilot tones are included within symbols (e.g., orthogonal frequency division multiplexing (OFDM) symbols) transmitted between wireless communication devices. The pilot tones occupy fewer than all tone locations in any given symbol, and the pilot tones occupy different respective locations within different symbols. Generally, these traveling pilots are assigned to different respective tone locations in different symbols. In total, the pilot tones did not cover every single tone location within the symbols used to convey information between devices. Considering for example, when pilots occupy fewer than all tone locations, even among multiple symbols, a device may perform interpolation to generate a pilot tone estimate corresponding to a tone location not occupied by pilot tone within any symbol. Also, power or magnitude of the pilot tones themselves may be boosted or amplified relative to power magnitude of other tones within such symbols.
Abstract:
A wireless communication device (alternatively, device, WDEV, etc.) includes at least one processing circuitry configured to support communications with other WDEV(s) and to generate and process signals for such communications. In some examples, the device includes a communication interface and a processing circuitry, among other possible circuitries, components, elements, etc. to support communications with other WDEV(s) and to generate and process signals for such communications. A WDEV generates an orthogonal frequency division multiple access (OFDMA) frame that includes a preamble that specifies allocation and/or non-allocation of at least one resource unit (RU) for a communication channel and transmits the OFDMA frame to at least one other wireless communication device to be processed by the at least one other wireless communication device to determine the allocation of the at least one RU for the communication channel or the non-allocation of the at least one RU for the communication channel.
Abstract:
A wireless communication device includes a communication interface and a processor that operate to generate a first transmission stream by processing first information based on first parameter(s) and a second transmission stream by processing second information based on second parameter(s). In some examples, the second at least one parameter is relatively less robust than the first at least one parameter, and the second information augments the first information when combined with the first information. The wireless communication device then transmits the first transmission stream and the second transmission stream to at least one other wireless communication device. Examples of such parameters include forward error correction (FEC) code, error correction code (ECC), modulation coding set (MCS), modulation type including a mapping of constellation points arranged in a constellation, power (e.g., transmit (TX) power), orthogonal frequency division multiplexing (OFDM) configuration, and/or a multiple-input-multiple-output (MIMO) configuration.
Abstract:
A wireless communication device is implemented to include a communication interface and a processor. The processor is configured to process communications associated with the other wireless communication devices within the wireless communication system to determine one or more traffic characteristics of those communications as well as one or more class characteristics of the other wireless communication devices. The processor is configured to classify the communications into one or more access categories based on the one or more traffic characteristics and is configured to classify the other devices into one or more device class categories based on the one or more class characteristics. The processor is then configured to generate one or more channel access control signals based on these classifications. The communication interface of the device is configured to transmit the one or more channel access control signals to one or more of the other devices.
Abstract:
A wireless communication device (alternatively, device) includes a communication interface and a processor, among other possible circuitries, components, elements, etc. to support communications with other wireless communication device(s) and to generate and process signals for such communications. A device is configured to generate various orthogonal frequency division multiplexing (OFDM) and/or orthogonal frequency division multiple access (OFDMA) packets (e.g., frames, signals, etc.) that are based on any of a group of set of OFDM/A frame structures. Across the various OFDM/A frame structures, the ratio of pilot sub-carriers to data sub-carriers across resource units (RUs) of decreases as the total number of sub-carriers across the RUs increases. In addition, some of the OFDM/A frame structures include different total number of sub-carriers yet same number of pilot sub-carriers. The device is configured to perform adaptation among and between the various OFDM/A frame structures based on any one or more considerations.
Abstract:
A wireless communication device (alternatively, device, WDEV, etc.) includes a processing circuitry configured to support communications with other WDEV(s) and to generate and process signals for such communications. In some examples, the device includes a communication interface and a processing circuitry, among other possible circuitries, components, elements, etc. to support communications with other WDEV(s) and to generate and process signals for such communications. A WDEV generates and transmits a first signal that includes a field that specifies an acceptable interference level (AIL) for concurrent communication for use by a first other WDEV to determine whether a transmission from the first other WDEV to a second other WDEV acceptably or unacceptably interferes with another transmission from the WDEV. Concurrent communication (e.g., from the WDEV to a third other WDEV, and from the first other WDEV to the second other WDEV) may be made when the AIL compares favorably with the AIL.