Abstract:
A display device comprising: a display module for displaying image and having a substrate being an upper component of the display module; a sensing electrode for sensing an electrocardio signal of a user, with the sensing electrode arranged above the substrate. With such a display device, high integration of the function of health test and the display device can be integrated, thereby improving usage experience of the user and facilitating to reduce the whole size of the display device.
Abstract:
A mobile communication terminal comprises: a magnetic field unit for generating magnetic field; an induction unit comprising at least one coil; a fixed unit and a motion unit which is movable relative to the fixed unit, wherein one of the magnetic field unit and the induction unit is arranged on the fixed unit, and the other is arranged on the motion unit; and an energy storage unit electrically connected to the induction unit for storing electrical energy generated by the induction unit. The mobile communication terminal can solve the problem that existing mobile communication terminals have large power consumption and short continuous service time. It can take full advantage of energies and have long continuous service time.
Abstract:
A blue photoresist composition capable of emitting infrared light, a method of preparing the blue photoresist composition capable of emitting infrared light, a color filter including blue sub-pixels formed from the blue photoresist composition capable of emitting infrared light, and a display device including the color filter. The blue photoresist composition capable of emitting infrared light includes, based on the total weight of the composition, 2% to 20% of a color mixed material, 30% to 90% of a solvent, 2% to 25% of an alkali-soluble resin, 2% to 20% of an unsaturated monomer, 0.01% to 1% of photoinitiator, and 0.005% to 0.02% of other additives; wherein the color mixed material includes a colorant and a surface-modified infrared light-emitting material at a weight ratio of 20:1 to 1:1.
Abstract:
Embodiments of the present disclosure provide a LED device, a light guide plate and a backlight module, which are capable of generating red light, green light and blue light under excitation of ultraviolet light, and reducing damages of human eyes due to blue light by attenuating or eliminating light intensity of the blue light having a wavelength of 460 nm. The LED device comprises an ultraviolet illuminant and a quantum dot film located on a light emitting side of the ultraviolet illuminant. The quantum dot film includes a quantum dot material capable of generating the red light, the green light and the blue light under excitation of ultraviolet light. The wavelength of the generated blue light is within a wave band of 450˜470 nm, and a wave crest of the generated blue light is located within the wave band excluding 460 nm.
Abstract:
An in-cell touch panel and a display device, a touch driving method are disclosed. A common electrode layer in an array substrate is partitioned into a plurality of sub-electrodes arranged in an array. Sub-electrodes that are alternately disposed in a respective row of sub-electrodes serve as touch driving sub-electrodes that form a touch driving electrode. Sub-electrodes other than the touch driving sub-electrodes serve as common sub-electrodes. Touch sensing electrodes with projections within areas where corresponding common sub-electrodes are located are provided on an opposed substrate. Upon a line-by-line scanning of gate lines covered by respective rows of sub-electrodes, sub-electrodes in a currently-scanned row are applied with a common electrode signal, touch driving electrodes in rows of sub-electrodes other than the currently-scanned row of sub-electrodes are applied with touch driving signals.
Abstract:
The present invention provides a wearable device and an application system. The wearable device is configured to be worn by a wearer and includes: a brain wave collection unit configured to collect a brain wave of the wearer; a determination unit configured to obtain an instruction according to the brain wave collected by the brain wave collection unit and send the instruction to a sending unit; and the sending unit configured to send control information to an application device according to the instruction sent from the determination unit. The wearable device of the present invention can be used to control application device such as household applications and especially applies to control of application device by special populations or under special conditions.
Abstract:
The present invention provides a functional material and a method for preparing the same, as well as a color filter material and a color filter substrate. The present invention belongs to the display technical field and can solve the problem that existing color filter films are environmentally unfriendly and have poor heat resistance and unsatisfactory colors. The functional material of the present invention includes an inorganic powder whose surface has a modified layer, wherein the inorganic powder includes any one or more of aluminum oxide, magnesium oxide, zinc oxide, zirconium oxide, silicon dioxide, titanium dioxide, boron oxide, diiron trioxide, calcium oxide, potassium oxide, sodium oxide and lithium oxide; and the modified layer is generated by a reaction of a dianhydride and a diamine. The color filter material of the present invention includes the above functional material and a quantum dot. The color filter substrate of the present invention includes a color filter film made of the above color filter material.
Abstract:
A multi-faced display device includes a first display panel and a second display panel, each of which is curved to form an L-shaped structure. The first display panel is encapsulated with the second display panel such that the first display panel and the second display panel together form a closed structure.
Abstract:
The present application discloses a method of fabricating a light extraction layer having a corrugated surface. The method includes forming a transparent optical material layer using a trans optical material; and forming a plurality of convex portions on a surface of the transparent optical material layer using a molding plate having a plurality of concave portions on a surface of the molding plate; the plurality of convex portions respectively substantially complementary to the plurality of concave portions.
Abstract:
An in-cell touch panel and a display device, a touch driving method are disclosed. A common electrode layer in an array substrate is partitioned into a plurality of sub-electrodes arranged in an array. Sub-electrodes that are alternately disposed in a respective row of sub-electrodes serve as touch driving sub-electrodes that form a touch driving electrode. Sub-electrodes other than the touch driving sub-electrodes serve as common sub-electrodes. Touch sensing electrodes with projections within areas where corresponding common sub-electrodes are located are provided on an opposed substrate. Upon a line-by-line scanning of gate lines covered by respective rows of sub-electrodes, sub-electrodes in a currently-scanned row are applied with a common electrode signal, touch driving electrodes in rows of sub-electrodes other than the currently-scanned row of sub-electrodes are applied with touch driving signals.