Abstract:
The present disclosure discloses a manufacturing method of an array substrate, an array substrate, a display panel and a display device. The manufacturing method comprises: forming a shielding layer on a base substrate, wherein the shielding layer absorbs light and is made of photoresist; and forming a transistor device layer on the base substrate on which the shielding layer is formed, wherein an orthographic projection of a conductor in the transistor device layer on the base substrate is within an orthographic projection of the shielding layer on the base substrate. The shielding layer can prevent external light from irradiating the conductor in the transistor device layer, and can absorb external light. In addition, the manufacturing process is simple.
Abstract:
A method for manufacturing an array substrate, including forming at least two data lines, forming a buffer layer on the data lines, forming an organic film, which is provided with vias, on the buffer layer, the vias being in a partially overlapping relationship with the orthographic projection of the two adjacent data lines on a base substrate, forming a first conductive layer on the organic film.
Abstract:
The present invention provides a display substrate comprising a plurality of pixel regions and a thin film transistor provided in each of the pixel regions. Each of the pixel regions comprises a transmissive region and a reflective region, and a protection layer is provided on the thin film transistor. A portion of the protection layer corresponding to the reflective region is a protrusion portion, and a portion of the protection layer corresponding to the thin film transistor is provided with a via therein.
Abstract:
A method for fabricating a one glass solution touch panel is provided. The method includes forming a protective layer on a first surface of a substrate, and forming a black matrix, a plurality of first electrodes, a plurality of second electrodes, a first over coat layer, and a plurality of conductive bridges on a second surface of the substrate, wherein the second surface includes a visual area in which the first electrodes and the second electrodes are arranged in an alternating pattern, and a non-visual area where the black matrix is provided, wherein the second electrode includes a plurality of conductive lumps, wherein each of the conductive lumps is located between adjacent first electrodes, wherein the first over coat layer separates the conductive lumps from the first electrodes, and wherein each conductive bridge connects the conductive lumps belonging to the same second electrode.
Abstract:
The embodiment of the present application discloses an array substrate, a liquid crystal display panel, and a display device, with first common electrode compensation lines being arranged within pixel regions which correspond to pixels provided with a minimal transmittance, by which first common electrode compensation lines a common electrode is charged so as to ensure a constant voltage on the common electrode. Moreover, since the first common electrode compensation lines are configured to overlap neither first signal lines nor second signal lines, a repairmen of the first signal lines or the second signal lines will not be adversely affected in case that there is short-circuit or open-circuit thereon. Besides, since the common electrode compensation lines are arranged within pixel regions provided with the lowest transmittance, the influence onto overall transmittance of the display panel is minimized relatively.
Abstract:
The present invention discloses a conductive structure, a method of manufacturing the conductive structure, and an array substrate. The method of manufacturing the conductive structure, comprising steps of: Forming a barrier metal film and a copper metal film in this order on a substrate, wherein the copper metal film being laminated on the barrier metal film; forming a preset photoresist pattern on the copper metal film; etching the barrier metal film and the copper metal film; oxidizing an exposed sidewall of the etched barrier metal film and an exposed sidewall of the etched copper metal film, so as to generate metal oxide layers on the exposed sidewall of the etched barrier metal film and the exposed sidewall of the etched copper metal film, respectively; and stripping off the photoresist pattern by means of a photoresist stripping liquid. In the method of manufacturing the conductive structure according to embodiments of the present invention, the exposed sidewall of the conductive structure is oxidized to generate a uniform metal oxidization layer on the exposed sidewall before removing the photoresist from the conductive structure by a wet stripping process. In this way, it can effectively prevent the interfaces between the copper metal film and the barrier metal film from being separated during performing the wet stripping process.
Abstract:
Provided are a thin film transistor and method for manufacturing the same, array substrate, display panel and display device. The thin film transistor includes: a gate pattern, a gate insulating layer, an active layer pattern, a source pattern and a drain pattern sequentially stacked. At least one of a surface of the source pattern facing the gate insulating layer, a surface of the drain pattern facing the gate insulating layer, and a surface of the gate pattern facing the gate insulating layer is a target surface which can diffusely reflecting lights entering the target surface, to prevent part of the lights from entering the active layer pattern. The display device solves the problem of volt-ampere characteristic curve of the active layer pattern being deflected and a normal operation of the thin film transistor being affected, thereby weakening the influence of lights on the normal operation of thin film transistor.
Abstract:
An array substrate, a manufacturing method thereof, and a display panel are provided. The array substrate comprises a base substrate, a plurality of gate lines and gate electrodes on the base substrate, each gate electrode being corresponding to and separate from a respective gate line, a gate insulating layer over the gate electrode and the gate line, the gate insulating layer having a first via hole and a second via hole, the first via hole exposing the gate electrode, the second via hole exposing the gate line, a conductive connection layer and a polysilicon semiconductor layer on the gate insulating layer, the conductive connection layer filling the first via hole and the second via hole to connect the gate line with the gate electrode.
Abstract:
The present disclosure discloses a manufacturing method of an array substrate, an array substrate, a display panel and a display device. The manufacturing method comprises: forming a shielding layer on a base substrate, wherein the shielding layer absorbs light and is made of photoresist; and forming a transistor device layer on the base substrate on which the shielding layer is formed, wherein an orthographic projection of a conductor in the transistor device layer on the base substrate is within an orthographic projection of the shielding layer on the base substrate. The shielding layer can prevent external light from irradiating the conductor in the transistor device layer, and can absorb external light. In addition, the manufacturing process is simple.
Abstract:
The present disclosure provides a touch substrate, a touch display panel and a display device which belong to a field of touch display. The touch substrate includes a plurality of photo-sensing thin film transistor arranged on the substrate, the touch substrate further includes a piezoelectric sensing structure arranged above at least one of the photo-sensing thin film transistors, and a breakover current between a source and a drain of the photo-sensing thin film transistor corresponding to the piezoelectric sensing structure is changed, when the at least one piezoelectric sensing structure is pressed.