Abstract:
An apparatus for reflectivity measurement is provided. The apparatus generally measures reflectivity characteristics of a reflective surface, such as a reflective cavity of a light array. The apparatus generally comprises a body defining a volume and a light emitting element disposed outside the volume. A sensor coupled to the body detects light reflected from a reflective surface. Various embodiments provide positioning of the apparatus relative to a light array having a reflective cavity.
Abstract:
Embodiments disclosed herein generally relate to a slit valve door assembly for sealing an opening in a chamber. A slit valve door that is pressed against the chamber to seal the slit valve opening moves with the chamber as the slit valve opening shrinks so that an o-ring pressed between the slit valve door and the chamber may move with the slit valve door and the chamber. Thus, less rubbing of the o-ring against the chamber may occur. With less rubbing, fewer particles may be generated and the o-ring lifetime may be extended. With a longer lifetime for the o-ring, substrate throughput may be increased.
Abstract:
A support ring for semiconductor processing is provided. The support ring includes a ring shaped body defined by an inner edge and an outer edge. The inner edge and outer edge are concentric about a central axis. The ring shaped body further includes a first side, a second side, and a raised annular shoulder extending from the first side of the ring shaped body at the inner edge. The support ring also includes a coating on the first side. The coating has an inner region of reduced thickness region abutting the raised annular shoulder.
Abstract:
Embodiments described herein include a susceptor for semiconductor processing including an oriented graphite plate that may have a thickness of at least 1 mm. The susceptor may have a support member, and the oriented graphite plate may be disposed on the support member. The support member may have a center thermal conduit and an edge thermal conduit, and may be substantially solid between the center thermal conduit and the edge thermal conduit.
Abstract:
A support ring for semiconductor processing is provided. The support ring includes a ring shaped body defined by an inner edge and an outer edge. The inner edge and outer edge are concentric about a central axis. The ring shaped body further includes a first side, a second side, and a raised annular shoulder extending from the first side of the ring shaped body at the inner edge. The support ring also includes a coating on the first side. The coating has an inner region of reduced thickness region abutting the raised annular shoulder.
Abstract:
Embodiments of the present disclosure provide a cover assembly that includes a cover disposed between a device side surface of a substrate and a reflector plate, which are disposed within a thermal processing chamber. The presence of the cover between the device side surface of a substrate and a reflector plate has many advantages over conventional thermal processing chamber designs, which include an improved temperature uniformity during processing, a reduced chamber down time and an improved cost-of-ownership of the processes performed in the thermal processing chamber. In some configurations, the cover includes two or more ports that are formed therein and are positioned to deliver a gas, from a space formed between the reflector plate and the cover, to desired regions of the substrate during processing to reduce the temperature variation across the substrate.
Abstract:
Embodiments of the disclosure generally relate to a support cylinder used in a thermal process chamber. In one embodiment, the support cylinder comprises a ring body having an inner peripheral surface and an outer peripheral surface, wherein the ring body comprises an opaque quartz glass material and wherein the ring body is coated with an optical transparent layer. The optical transparent layer has a coefficient of thermal expansion that is substantially matched or similar to the opaque quartz glass material to reduce thermal expansion mismatch that may cause thermal stress under high thermal loads. In one example, the opaque quartz glass material is synthetic black quartz and the optical transparent layer comprises a clear fused quartz material.
Abstract:
A support ring for semiconductor processing is provided. The support ring includes a ring shaped body defined by an inner edge and an outer edge. The inner edge and outer edge are concentric about a central axis. The ring shaped body further includes a first side, a second side, and a raised annular shoulder extending from the first side of the ring shaped body at the inner edge. The support ring also includes a coating on the first side. The coating has an inner region of reduced thickness region abutting the raised annular shoulder.
Abstract:
An apparatus for reflectivity measurement is provided. The apparatus generally measures reflectivity characteristics of a reflective surface, such as a reflective cavity of a light array. The apparatus generally comprises a body defining a volume and a light emitting element disposed outside the volume. A sensor coupled to the body detects light reflected from a reflective surface. Various embodiments provide positioning of the apparatus relative to a light array having a reflective cavity.
Abstract:
Embodiments of the disclosure relate to methods for measuring temperature and a tool for calibrating temperature control of a substrate support in a processing chamber without contact with a surface of the substrate support. In one embodiment, a test fixture with a temperature sensor is removably mounted to an upper surface of a chamber body of the processing chamber such that the temperature sensor has a field of view including an area of the substrate support that is adjacent to a resistive coil disposed in the substrate support. One or more calibration temperature measurements of the area of the substrate support are taken by the temperature sensor and simultaneously one or more calibration resistance measurements of the resistive coil are taken corresponding to each calibration temperature measurement. Temperature control of a heating element disposed in the substrate support is calibrated based on the calibration temperature and calibration resistance measurements.