Abstract:
A method of fabricating a processing chamber component comprises forming a processing chamber component having a structural body with surface regions having microcracks, and directing a laser beam onto the microcracks of the surface regions of the structural body for a sufficient time to heal and close off the microcracks by themselves.
Abstract:
A retaining ring includes a generally annular upper portion having a top surface configured to be connected to a base of a carrier head and a lower surface, and a plurality of substantially identical arcuate segments detachably secured to the upper portion to form an annular lower portion. Each of the arcuate segments has an upper surface that abuts the lower surface of the upper portion and a bottom surface for contacting a polishing pad during polishing.
Abstract:
A retaining ring includes an annular lower portion and an annular upper portion. The annular lower portion has a main body with a bottom surface for contacting a polishing pad during polishing, an inner rim projecting upward from the main body, an outer rim projecting upward from the main body and separated from the inner rim by a gap, and a plurality of azimuthally separated interlock features positioned between the inner rim and the outer rim, each interlock feature projecting upwardly from the main body. The annular upper portion has a top surface and a bottom surface and a plurality of azimuthally separated recesses in the bottom surface, the recesses defining thin portions of the upper portion, the plurality of interlock features fitting into the plurality of recesses. The lower portion is a plastic and the upper portion is a material that is more rigid than the plastic.
Abstract:
An apparatus comprises a flexible membrane for use with a carrier head of a substrate chemical mechanical polishing apparatus. The membrane comprises an outer surface providing a substrate receiving surface, wherein the outer surface has a central portion and an edge portion surrounding the central portion, wherein the central portion has a first surface roughness and the edge portion has a second surface roughness, the first surface roughness being greater than the second surface roughness.
Abstract:
Embodiments disclosed herein generally relate to a temperature sensor disposed in an apparatus. In many semiconductor, liquid crystal display, solar panel or organic light emitting display fabrication processes, RF power is utilized to either ignite a plasma within the processing chamber or to provide supplemental energy to the process. Temperature control during many processes may be beneficial in order to produce a consistent product. Temperature sensors or thermocouples are sometimes utilized to measure the temperature of a substrate within a processing chamber. The RF power may have a negative impact on the temperature sensor. By coating the temperature sensor with a nanoparticle based metal coating, such as a silver coating, the negative impacts of the RF power on the temperature sensor may be reduced without contaminating the process, and an accurate temperature measurement may be obtained.
Abstract:
A method and apparatus for planarizing a substrate are provided. A substrate carrier head with an improved cover for holding the substrate securely is provided. The cover may have a bead that is larger than the recess into which it fits, such that the compression forms a conformal seal inside the recess. The bead may also be left uncoated to enhance adhesion of the bead to the surface of the groove. The surface of the cover may be roughened to reduce adhesion of the substrate to the cover without using a non-stick coating.