Abstract:
A method and apparatus for processing a semiconductor is disclosed herein. In one embodiment, a processing system for semiconductor processing is disclosed. The processing chamber includes two transfer chambers, a processing chamber, and a rotation module. The processing chamber is coupled to the transfer chamber. The rotation module is positioned between the transfer chambers. The rotation module is configured to rotate the substrate. The transfer chambers are configured to transfer the substrate between the processing chamber and the transfer chamber. In another embodiment, a method for processing a substrate on the apparatus is disclosed herein.
Abstract:
Implementations disclosed herein generally relate to systems and methods of protecting a substrate support in a process chamber from cleaning fluid during a cleaning process. The method of cleaning the process chamber includes positioning in the process chamber a cover substrate above a substrate support and a process kit that separates a purge volume from a process volume. The method of cleaning includes flowing a purge gas in the purge volume to protect the substrate support and flowing a cleaning fluid to a process volume above the cover substrate, flowing the cleaning fluid in the process volume to an outer flow path, and to an exhaust outlet in the chamber body. The purge volume is maintained at a positive pressure with respect to the process volume to block the cleaning fluid from the purge volume.
Abstract:
Embodiments described herein relate to ground path systems providing a shorter and symmetrical path for radio frequency (RF) energy to propagate to a ground to reduce generation of the parasitic plasma. The ground path system bifurcates the processing volume of the chamber to form an inner volume that isolates an outer volume of the processing volume.
Abstract:
Embodiments of the disclosure relate to faceplates for a processing chamber. In one example, a faceplate includes a body having a plurality of apertures formed therethrough. A heating element is disposed within the body, and the heating element circumscribes the plurality of apertures. A support ring is disposed the body. The support ring circumscribes the heating element. The support ring includes a main body and a cantilever extending radially inward from the main body. The cantilever contacts the body of the faceplate.
Abstract:
A gas distribution apparatus is disclosed. The apparatus includes a faceplate and a blocker plate. An adjustment mechanism is coupled to the blocker plate and is operable to position the blocker plate relative to the faceplate in order to modify a flow profile of a gas flowing therethrough. A method of processing a substrate using the gas distribution is also disclosed.
Abstract:
Embodiments of the invention contemplate a shadow ring that provides increased or decreased and more uniform deposition on the edge of a wafer. By removing material from the top and/or bottom surfaces of the shadow ring, increased edge deposition and bevel coverage can be realized. In one embodiment, the material on the bottom surface is reduced by providing a recessed slot on the bottom surface. By increasing the amount of material of the shadow ring, the edge deposition and bevel coverage is reduced. Another approach to adjusting the deposition at the edge of the wafer includes increasing or decreasing the inner diameter of the shadow ring. The material forming the shadow ring may also be varied to change the amount of deposition at the edge of the wafer.
Abstract:
An apparatus for plasma processing a substrate is provided. The apparatus comprises a processing chamber, a substrate support disposed in the processing chamber, and a lid assembly coupled to the processing chamber. The lid assembly comprises a conductive gas distributor coupled to a power source. A tuning electrode may be disposed between the conductive gas distributor and the chamber body for adjusting a ground pathway of the plasma. A second tuning electrode may be coupled to the substrate support, and a bias electrode may also be coupled to the substrate support.
Abstract:
A method and apparatus for processing a semiconductor is disclosed herein. In one embodiment, a processing system for semiconductor processing is disclosed. The processing chamber includes two transfer chambers, a processing chamber, and a rotation module. The processing chamber is coupled to the transfer chamber. The rotation module is positioned between the transfer chambers. The rotation module is configured to rotate the substrate. The transfer chambers are configured to transfer the substrate between the processing chamber and the transfer chamber. In another embodiment, a method for processing a substrate on the apparatus is disclosed herein.
Abstract:
Embodiments of the present disclosure generally provide apparatus and methods for monitoring one or more process parameters, such as temperature of substrate support, at various locations. One embodiment of the present disclosure provides a sensor column for measuring one or more parameters in a processing chamber. The sensor column includes a tip for contacting a chamber component being measured, a protective tube having an inner volume extending from a first end and second end, wherein the tip is attached to the first end of the protective tube and seals the protective tube at the first end, and a sensor disposed near the tip. The inner volume of the protective tube houses connectors of the sensor, and the tip is positioned in the processing chamber through an opening of the processing chamber during operation.
Abstract:
An apparatus for plasma processing a substrate is provided. The apparatus comprises a processing chamber, a substrate support disposed in the processing chamber, and a lid assembly coupled to the processing chamber. The lid assembly comprises a conductive gas distributor coupled to a power source. A tuning electrode may be disposed between the conductive gas distributor and the chamber body for adjusting a ground pathway of the plasma. A second tuning electrode may be coupled to the substrate support, and a bias electrode may also be coupled to the substrate support.