Abstract:
Embodiments of the present disclosure relate to method and apparatus for providing processing gases to a process chamber with improved plasma dissociation efficiency. One embodiment of the present disclosure provides a baffle nozzle assembly comprising an outer body defining an extension volume connected to a processing chamber. A processing gas is flown to the processing chamber through the extension volume which is exposed to power source for plasma generation.
Abstract:
Embodiments of the present invention provide methods and apparatus for removing debris particles using a stream of charged species. In one embodiment, an apparatus for removing debris particles from a beam of radiation includes a mask station comprising a chamber body, a mask stage disposed in the mask station, and a conductive plate having an opening formed therein, wherein the conductive plate is disposed in a spaced apart relationship to the mask stage in the mask station, defining an interior volume between the mask stage and the conductive plate.
Abstract:
Embodiments of the present invention provides methods to etching a mask layer, e.g., an absorber layer, disposed in a film stack for manufacturing a photomask in EUV applications and phase shift and binary photomask applications. In one embodiment, a method of etching an absorber layer disposed on a photomask includes transferring a film stack into an etching chamber, the film stack having a chromium containing layer partially exposed through a patterned photoresist layer, providing an etching gas mixture including Cl2, O2 and at least one hydrocarbon gas in to a processing chamber, wherein the Cl2 and O2 is supplied at a Cl2:O2 ratio greater than about 9, supplying a RF source power to form a plasma from the etching gas mixture, and etching the chromium containing layer through the patterned photoresist layer in the presence of the plasma.