Abstract:
A magnetoresistance element has a double pinned arrangement with two antiferromagnetic pinning layers, two pinned layers, and a free layer. A spacer layer between one of the two antiferromagnetic pinning layers and the free layer has a material selected to allow a controllable partial pinning by the one of the two antiferromagnetic pinning layers.
Abstract:
A magnetic field sensor includes at least one coil responsive to an AC coil drive signal; at least one magnetic field sensing element responsive to a sensing element drive signal and configured to detect a directly coupled magnetic field generated by the at least one coil and to generate a magnetic field signal in response to the directly coupled magnetic field; a processor responsive to the magnetic field signal to compute a sensitivity value associated with detection of the directly coupled magnetic field and substantially independent of a reflected magnetic field reflected by a conductive target disposed proximate to the at least one magnetic field sensing element; and an output signal generator configured to generate an output signal of the magnetic field sensor indicative of the reflected magnetic field.
Abstract:
A magnetic field sensor includes at least one coil responsive to an AC coil drive signal; at least one magnetic field sensing element responsive to a sensing element drive signal and configured to detect a directly coupled magnetic field generated by the at least one coil and to generate a magnetic field signal in response to the directly coupled magnetic field; a processor responsive to the magnetic field signal to compute a sensitivity value associated with detection of the directly coupled magnetic field and substantially independent of a reflected magnetic field reflected by a conductive target disposed proximate to the at least one magnetic field sensing element; and an output signal generator configured to generate an output signal of the magnetic field sensor indicative of the reflected magnetic field.
Abstract:
In one aspect, a magnetic field angle sensor includes a bridge structure that include a sine bridge configured to generate a sinusoidal signal indicative of a magnetic field along a first axis and a cosine bridge configured to generate a cosinusoidal signal indicative of the magnetic field along a second axis that is orthogonal with respect to the first axis. One of the sine bridge or the cosine bridge includes a first set of at least two magnetoresistance elements, a second set of at least one magnetoresistance element, a third set of at least one magnetoresistance element and a fourth set of at least one magnetoresistance element. An average reference direction of the first set of at least two magnetoresistance elements is equal to an average reference direction of the third set of at least one magnetoresistance element. An average reference direction of the second set of at least one magnetoresistance element is equal to an average direction angle of the fourth set of at least one magnetoresistance element.
Abstract:
Methods and apparatus for providing data transfer with a drive coil to transmit information, a receive coil magnetically coupled to the drive coil, and a first magnetoresistive sensor proximate the receive coil to detect information from the receive coil. In embodiments, the drive and receive coils are separated by an isolation material. In embodiments, a signal isolator IC packages includes transmit and receive coils and a magnetic field sensing element coupled to the receive coil.
Abstract:
Systems and methods described herein provide a current sensor based on magnetic field detection having multiple sensor arrangements with multiple, different sensitivity ranges. The outputs of the multiple sensor arrangements can be combined to generate a single output signal. The current sensor can include two or more sensor arrangements, each having one or more magnetic field sensing elements, and configured to sense a magnetic field in different first measurement ranges corresponding to different ranges of currents through the conductor and further configured to generate different magnetic field signals indicative of the sensed magnetic field in the respective measurement range. The current sensor can include a circuit configured to generate an output signal indicative of a combination of the different magnetic field signals that corresponds to the current through the conductor.
Abstract:
A magnetic field sensor and an associated method use one or more magnetoresistance elements driven with an AC mixing current and experiencing an AC mixing magnetic field to generate a DC voltage signal or a DC voltage signal component related to a slope of a transfer curve of the one or more magnetoresistance elements.
Abstract:
A magnetoresistance element has a pinning arrangement with two antiferromagnetic pinning layers, two pinned layers, and a free layer. A spacer layer between one of the two antiferromagnetic pinning layers and the free layer has a material selected to allow a controllable partial pinning by the one of the two antiferromagnetic pinning layers.
Abstract:
A magnetoresistance element has a seed layer that promotes an increased magnetic anisotropy of layers of the magnetoresistance element above the seed layer structure.
Abstract:
A magnetoresistance assembly can include a substrate and a first GMR element disposed over the substrate, the first GMR element having a bottom surface and top surface. The magnetoresistance assembly can further include a first TMR element disposed over the substrate, the first TMR element having a top surface and a bottom surface, wherein a line perpendicular to and intersecting the top or bottom surface of the first TMR element intersects the first GMR element. The first GMR element and the first TMR element are in electrical communication.