Abstract:
Process for desulfurization of an effluent for cracking or steam-cracking hydrocarbons, more particularly a gasoline for example for catalytic cracking that comprises the elimination of thiophenic compounds by alkylation of these compounds, followed by a distillation, a hydrocracking of said alkyl-thiophenic compounds, then a hydrodesulfurization of the effluent that is obtained from the hydrocracking zone. In a preferred embodiment, this process comprises a preliminary stage for separating the cracking or steam-cracking effluent into three fractions, and proposes sending to the alkylation stage only the intermediate fraction that is low in heavy basic nitrogen-containing compounds that are initially present in the effluents that are to be alkylated.
Abstract:
This invention relates to a process for the desulfurization of olefinic gasolines that employs a reaction for increasing the weight of sulfur-containing compounds by alkylation on the olefins of the feedstock, by means of an acidic catalyst, and that comprises a regeneration of the catalyst that can be carried out sequentially or continuously.
Abstract:
A process for jointly carrying out selective hydrogenation of polyunsaturated compounds into monounsaturated compounds contained in gasolines, and for transforming light sulphur-containing compounds into heavier compounds by reaction with unsaturated compounds employing a supported catalyst, comprising at least one metal from group VIB and at least one non-noble metal from group VIII used in the sulphurized form deposited on a support and having a controlled porosity, and comprising bringing the feed into contact with the catalyst at a temperature in the range of 80° C. to 220° C. at a liquid hourly space velocity in the range of 1 h−1 to 10 h−1 and at a pressure in the range of 0.5 to 5 MPa.
Abstract:
This invention describes a method for determining the content of conjugated diolefins by means of the measurement of the MAV of a sample of catalytic cracking gasoline or thermal cracking gasoline, from its NIR (near-infrared) spectrum, and the application of said method for monitoring a unit for selective hydrogenation of the cracking gasolines.
Abstract:
The invention relates to a method for pretreatment of a solid catalyst that is obtained by a reaction between an inorganic binder and phosphoric acid, whereby said method comprises a stage in which said catalyst is brought into contact with a mixture of hydrocarbons under swelling conditions of the catalyst up to a predetermined volume increase, with no significant volume constraint on said catalyst. The invention also relates to an operating process of said catalyst in an alkylation or oligomerization reactor.
Abstract:
A novel process is described which allows selective hydrodesulphurizing gasoline cuts containing sulphur-containing compounds and olefins. The process employs a catalyst comprising a support selected, for example, from refractory oxides such as aluminas, silicas, silica-aluminas or magnesia, used alone or as a mixture, a group VI metal, preferably Mo or W which may or may not be promoted by a group VIII metal, Co or Ni. The catalyst is characterized by a mean pore diameter of more than 22 nm. The process may comprise one or more steps.
Abstract:
The invention relates to a process for the hydrotreatment of an olefinic gasoline comprising at least one selective hydrogenation stage, and generally of simultaneous conversion of mercaptans by weight increase, in which the makeup hydrogen used in this stage or these stages has a reduced CO+CO2 content, preferably comprised between 5 and 200 ppmv. Most often, the CO content is comprised between 1 and 20 ppmv. The process typically makes it possible to hydrorefine an olefinic gasoline by more or less eliminating the diolefins and sulphur compounds.
Abstract translation:本发明涉及一种用于加氢处理烯烃汽油的方法,该方法包括至少一个选择性氢化阶段,通常同时通过重量增加转化硫醇,其中在该阶段或这些阶段中使用的补充氢具有减少的CO + CO 2 含量,优选在5和200ppmv之间。 通常,CO含量在1和20ppmv之间。 该方法通常使得可以通过或多或少地消除二烯烃和硫化合物来加氢精制烯烃汽油。
Abstract:
A process for jointly carrying out selective hydrogenation of polyunsaturated compounds into monounsaturated compounds contained in gasolines, and for transforming light sulphur-containing compounds into heavier compounds by reaction with unsaturated compounds, said process employing a supported catalyst comprising at least one metal from group VIB and at least one non-noble metal from group VIII used in the sulphurized form, deposited on a specific support comprising a metal aluminate of the MAl2O4 type with a metal M selected from the group constituted by nickel and cobalt, and comprising bringing the feed into contact with the catalyst at a temperature in the range of 80 ° C. to 220° C. at a liquid hourly space velocity in the range of 1 h−1 to 10 h31 1 and at a pressure in the range of 0.5 to 5 MPa.
Abstract translation:一种将多不饱和化合物选择氢化成汽油中所含的单不饱和化合物的方法,以及通过与不饱和化合物反应将轻质含硫化合物转化成较重的化合物的方法,所述方法采用包含至少一种VIB族金属的载体催化剂和 以硫化形式使用的来自第VIII族的至少一种非贵金属沉积在包含MAI 2 O 4 O 4型金属铝酸盐的特定载体上,金属M 选自由镍和钴构成的组,并且包括使进料在80℃至220℃的范围内的温度下以1小时的超低速的液时空速与催化剂接触。 > -1℃至10小时,并且在0.5至5MPa的压力范围内。
Abstract:
A process for jointly carrying out selective hydrogenation of polyunsaturated compounds into mono unsaturated compounds contained in gasolines, and for transforming light sulphur-containing compounds into heavier compounds by reaction with unsaturated compounds, said process employing a supported catalyst comprising at least one metal from group VIB and at least one non-noble metal from group VIII used in the sulphurized form deposited on a support and having a specific composition and comprising bringing the feed into contact with the catalyst at a temperature in the range of 80° C. to 220° C. at a liquid hourly space velocity in the range of 1 h−1 to 10 h−1 and at a pressure in the range of 0.5 to 5 MPa.
Abstract:
A novel process is described which allows selective hydrodesulphurizing gasoline cuts containing sulphur-containing compounds and olefins. The process employs a catalyst comprising a support selected, for example, from refractory oxides such as aluminas, silicas, silica-aluminas or magnesia, used alone or as a mixture, a group VI metal, preferably Mo or W which may or may not be promoted by a group VIII metal, Co or Ni. The catalyst is characterized by a mean pore diameter of more than 22 nm. The process may comprise one or more steps.