Small-spot spectrometry instrument with reduced polarization and multiple-element depolarizer therefor
    11.
    发明授权
    Small-spot spectrometry instrument with reduced polarization and multiple-element depolarizer therefor 失效
    具有减少极化的小点光谱仪器和多元素去极化器

    公开(公告)号:US07248362B2

    公开(公告)日:2007-07-24

    申请号:US11599906

    申请日:2006-11-15

    Abstract: A small-spot imaging, spectrometry instrument for measuring properties of a sample has a polarization-scrambling element, such as a birefringent plate depolarizer, incorporated between the polarization-introducing components of the system, such as the beamsplitter, and the microscope objective of the system. The plate depolarizer varies polarization with wavelength, and may be a Lyot depolarizer with two plates, or a depolarizer with more than two plates (such as a three-plate depolarizer). Sinusoidal perturbation in the resulting measured spectrum can be removed by data processing techniques or, if the depolarizer is thick or highly birefringent, the perturbation may be narrower than the wavelength resolution of the instrument.

    Abstract translation: 用于测量样品性质的小点成像光谱仪器具有结合在系统的偏振引导部件(例如分束器)之间的偏振加扰元件,例如双折射板去偏振器,以及显微镜物镜 系统。 板去极化器可以使波长偏振,并且可以是具有两个板的Lyot去极化器或具有多于两个板(例如三板去极化器)的去极化器。 可以通过数据处理技术去除所得测量光谱中的正弦扰动,或者如果消偏振器是厚的或高度双折射的,则扰动可能比仪器的波长分辨率窄。

    Aperture to reduce sensitivity to sample tilt in small spotsize reflectometers
    13.
    发明授权
    Aperture to reduce sensitivity to sample tilt in small spotsize reflectometers 失效
    光圈以减小小点状反射计中样品倾斜的灵敏度

    公开(公告)号:US07081957B2

    公开(公告)日:2006-07-25

    申请号:US10820903

    申请日:2004-04-08

    Applicant: Adam E. Norton

    Inventor: Adam E. Norton

    CPC classification number: G01N21/8806 G01N21/55 G01N21/9501 G01N2201/0642

    Abstract: An aperture for reducing tilt sensitivity in normal incidence optical metrology is formed to include one or more holes. The aperture is positioned to partially occlude one-half of the pupil of a normal incidence objective. A probe beam is projected to fill the pupil of the objective. The portion of the incident probe beam that passes through the aperture is reduced in cross-sectional profile. As a result, after reflection by the sample, that portion of the probe beam underfills the non-occluded portion of the pupil. The portion of the incident probe beam that passes through the non-occluded portion of the pupil overfills the occluded pupil upon reflect by the sample. The combination of underfilling and overfilling reduces the sensitivity of the objective to tilting of the sample.

    Abstract translation: 形成用于降低正常入射光学测量中的倾斜灵敏度的孔,以包括一个或多个孔。 孔径定位成部分地遮挡法向入射物镜的瞳孔的一半。 投影探测光束以填充物镜的光瞳。 穿过孔的入射探针光束的部分在横截面轮廓上减小。 结果,在样品反射之后,探测光束的该部分底部填充瞳孔的未遮挡部分。 入射探测光束穿过瞳孔的未遮挡部分的部分,在被样品反射时,超过填充的瞳孔。 填充和过度填充的组合降低了物镜倾斜样品的灵敏度。

    Notch and flat sensor for wafer alignment
    14.
    发明授权
    Notch and flat sensor for wafer alignment 有权
    凹槽和平面传感器用于晶圆对准

    公开(公告)号:US06677602B1

    公开(公告)日:2004-01-13

    申请号:US09932786

    申请日:2001-08-17

    Applicant: Adam E. Norton

    Inventor: Adam E. Norton

    CPC classification number: H01L21/681 G01N21/9503

    Abstract: A notch or flat sensor for a semiconductor wafer on a wafer stage or support includes a dual photodiode detector arrangement located at the edge position of the wafer. Each photodiode element has substantially equal coverage of the wafer edge when the wafer's notch or flat is not proximate to the detector, but has different coverage from the other photodiode when the notch or flat is proximate to the detector. A light source illuminates the edge of the wafer opposite the detector arrangement. Comparison of the light intensity sensed by each photodiode, e.g. by means of a differential amplifier circuit and threshold sensor, reveals the position of the notch or flat.

    Abstract translation: 用于晶片台或支架上的半导体晶片的凹口或平面传感器包括位于晶片的边缘位置的双光电二极管检测器装置。 当晶片的切口或平面不接近检测器时,每个光电二极管元件具有基本相等的晶片边缘覆盖,但是当切口或平面靠近检测器时,其具有与另一光电二极管不同的覆盖。 光源照亮与检测器装置相对的晶片的边缘。 比较由每个光电二极管感测的光强度。 通过差分放大器电路和阈值传感器,可以显示凹口或平面的位置。

    Spectroscopic measurement system using curved mirror
    15.
    发明授权
    Spectroscopic measurement system using curved mirror 有权
    光谱测量系统采用曲面镜

    公开(公告)号:US06323946B1

    公开(公告)日:2001-11-27

    申请号:US09280752

    申请日:1999-03-29

    Applicant: Adam E. Norton

    Inventor: Adam E. Norton

    Abstract: Achromatic optics may be employed in spectroscopic measurement systems. The achromatic optics comprises a spherical mirror receiving a beam of radiation in a direction away from its axis and a pair of lenses: a positive lens and a negative meniscus lens. The negative meniscus lens corrects for the spherical aberration caused by off-axis reflection from the spherical mirror. The positive lens compensates for the achromatic aberration introduced by the negative lens so that the optics, as a whole, is achromatic over visible and ultraviolet wavelengths. Preferably, the two lenses combined have zero power or close to zero power. By employing a spherical mirror, it is unnecessary to employ ellipsoidal or paraboloidal mirrors with artifacts of diamond turning which limit the size of the spot of the sample that can be measured in ellipsometry, reflectometry or scatterometry.

    Abstract translation: 消色差光学器件可用于光谱测量系统。 消色差光学器件包括接收沿其轴线的方向的辐射束的球面镜和一对透镜:正透镜和负弯月形透镜。 负弯月透镜校正由球面镜的离轴反射引起的球面像差。 正透镜补偿由负透镜引入的消色差,使得光学元件作为整体在可见光和紫外波长上是消色差的。 优选地,组合的两个透镜具有零功率或接近零功率。 通过使用球面镜,不需要使用具有金刚石车削伪影的椭圆形或抛物面镜,这限制了可以椭偏仪,反射测量或散射测量法测量的样品点的尺寸。

    Broadband microspectro-reflectometer
    16.
    发明授权
    Broadband microspectro-reflectometer 失效
    宽带显微光谱仪

    公开(公告)号:US5747813A

    公开(公告)日:1998-05-05

    申请号:US227482

    申请日:1994-04-14

    CPC classification number: G03F7/70483 G01B11/0625 G01N21/55

    Abstract: An improved method and apparatus for measuring the relative reflectance spectra of an observed sample (3) and method and apparatus for autofocussing the sample (3). A broadband visible and ultraviolet beam (42) is split into a sample beam (46) and a reference beam (48). The sample beam (46) is reflected off the surface of the sample (3), and the spectrum of the reflected sample beam (46) is compared to the spectrum of the reference beam (48) to determine the relative reflectance spectrum of the sample (3). A video camera (96) is provided for viewing the sample (3). The autofocus system has a course-focus mode and a fine-focus mode. In the course-focus mode, the sample (3) is focused when the centroid of the sample image is centered on a position sensitive detector (99). In the fine-focus mode, the sample is focused when the intensity of light reaching the detector (99) is minimized.

    Abstract translation: 用于测量观察样品(3)的相对反射光谱的改进的方法和装置以及用于自动聚焦样品(3)的方法和装置。 宽带可见光和紫外光束(42)被分成样本光束(46)和参考光束(48)。 样品光束(46)从样品(3)的表面反射,并将反射样品光束(46)的光谱与参考光束(48)的光谱进行比较,以确定样品的相对反射光谱 (3)。 提供用于观察样品(3)的摄像机(96)。 自动对焦系统具有课程对焦模式和精细对焦模式。 在对焦模式中,当样本图像的质心以位置敏感检测器(99)为中心时,样本(3)被聚焦。 在微调模式中,当到达检测器(99)的光的强度最小时,样品被聚焦。

    Method and apparatus for position-dependent optical metrology calibration
    18.
    发明授权
    Method and apparatus for position-dependent optical metrology calibration 失效
    用于位置相关光学计量校准的方法和装置

    公开(公告)号:US07224450B2

    公开(公告)日:2007-05-29

    申请号:US11364312

    申请日:2006-02-28

    CPC classification number: G01N21/9501 G01N21/274 G01N21/278 G01N21/93

    Abstract: A calibration method suitable for highly precise and highly accurate surface metrology measurements is described. In preferred embodiments, an optical inspection tool including a movable optics system is characterized in terms of position and wavelength dependent quantities over a range of motion. Once the position-dependant quantities are determined at various wavelengths and positions, they are stored and used to interpret data from test wafers having an unknown metrology. Free of position-dependent variations and other information pertaining to the measurement system, the accuracy of the resulting wafer measurement more closely matches the precision of the tool than existing techniques. In particular embodiments, a portion of the characterization of the optical system is accomplished by using tilted black glass to provide a non-reflective reference.

    Abstract translation: 描述了适用于高精度和高精度表面测量测量的校准方法。 在优选实施例中,包括可移动光学系统的光学检查工具的特征在于在运动范围上的位置和波长相关量。 一旦在各种波长和位置确定位置相关量,就将它们存储并用于从具有未知计量学的测试晶片中解释数据。 没有与位置相关的变化和与测量系统相关的其他信息,所得到的晶片测量的精度与现有技术的精度更接近。 在特定实施例中,通过使用倾斜的黑色玻璃来提供非反射参考来实现光学系统的表征的一部分。

    Polarimetric scatterometry methods for critical dimension measurements of periodic structures
    20.
    发明授权
    Polarimetric scatterometry methods for critical dimension measurements of periodic structures 失效
    周期性结构关键尺寸测量的极化散射法

    公开(公告)号:US06909507B2

    公开(公告)日:2005-06-21

    申请号:US10857223

    申请日:2004-05-28

    Abstract: An optical measurement system for evaluating a sample has a motor-driven rotating mechanism coupled to an azimuthally rotatable measurement head, allowing the optics to rotate with respect to the sample. A polarimetric scatterometer, having optics directing a polarized illumination beam at non-normal incidence onto a periodic structure on a sample, can measure optical properties of the periodic structure. An E-O modulator in the illumination path can modulate the polarization. The head optics collect light reflected from the periodic structure and feed that light to a spectrometer for measurement. A beamsplitter in the collection path can ensure both S and P polarization from the sample are separately measured. The measurement head can be mounted for rotation of the plane of incidence to different azimuthal directions relative to the periodic structures. The instrument can be integrated within a wafer process tool in which wafers may be provided at arbitrary orientation.

    Abstract translation: 用于评估样品的光学测量系统具有耦合到方位角可旋转测量头的电动机旋转机构,允许光学器件相对于样品旋转。 具有将非正常入射的偏振照明光束引导到样品上的周期性结构上的光学偏振散射仪可以测量周期性结构的光学性质。 照明路径中的E-O调制器可以调制偏振。 头部光学器件收集从周期性结构反射的光并将光馈送到光谱仪进行测量。 收集路径中的分束器可以确保来自样品的S和P极化分别测量。 测量头可以安装成相对于周期性结构使入射平面旋转到不同的方位角方向。 仪器可以集成在晶片工艺工具中,其中晶片可以以任意取向提供。

Patent Agency Ranking