Abstract:
To facilitate conducting a secure transaction via wireless communication between a portable electronic device (such as a smartphone) and another electronic device (such as a point-of-sale terminal), the portable electronic device may, after a final command is received from the other electronic device, determine a unique transaction identifier for the secure transaction. In particular, the final command may be specific to an applet, stored in a secure element in the portable electronic device, which conducts the secure transaction. The secure element may generate the unique transaction identifier based on financial-account information associated with the applet, which is communicated to the other electronic device. Next, the secure element may provide, to a processor in the portable electronic device, an end message for the secure transaction with the unique transaction identifier.
Abstract:
Disclosed herein are systems, methods, and non-transitory computer-readable storage media for key management for Issuer Security Domain (ISD) using GlobalPlatform Specifications. A client receives from a server an authorization to update a first ISD keyset. The client encrypts, via a client-side secure element, a second ISD keyset with a server public key. The client sends the encrypted second ISD keyset to the server for updating the first ISD keyset with the encrypted second ISD keyset. Prior to updating, the client generates the first ISD keyset at a vendor and sends the first ISD keyset to the client-side secure element and sends the first ISD keyset encrypted with the server public key to the server. The disclosed method allows for updating of an ISD keyset of which only the client-side secure element and a server have knowledge.
Abstract:
A commercial transaction method is disclosed. The method first establishes a secure link over a first air interface by a purchasing device. This secure link is between the purchasing device and a point of sale device. The method further identifies a second air interface, which is different from the first air interface, and the second air interface is used to conduct a secure commercial transaction.
Abstract:
Systems, methods, and computer-readable media for communicating electronic device secure element data over multiple paths for online payments are provided. In one example embodiment, a method includes, inter alia, at a commercial entity subsystem, receiving, from an electronic device, device transaction data that includes credential data indicative of a payment credential on the electronic device for funding a transaction with a merchant subsystem, accessing a transaction identifier, deriving a transaction key based on transaction key data that includes the accessed transaction identifier, transmitting, to one of the merchant subsystem and the electronic device, merchant payment data that includes a first portion of the credential data and the accessed transaction identifier, and sharing, with a financial institution subsystem using the transaction key, commercial payment data that includes a second portion of the credential data that is different than the first portion of the credential data. Additional embodiments are also provided.
Abstract:
Systems, methods, and computer-readable media for managing near field communications during a low power management mode of an electronic device are provided that may make credentials of a near field communication (“NFC”) component appropriately secure and appropriately accessible while also limiting the power consumption of the NFC component and of other components of the electronic device.
Abstract:
A device implementing a scalable wireless transaction system includes at least one processor configured to receive, from a wireless transaction system server, a list of wireless transaction group identifiers, and an indication of at least one applet associated with each of the wireless transaction group identifiers. The at least one processor is further configured to receive, from a wireless transaction device, a polling frame that includes one of the wireless transaction device group identifiers. The at least one processor is further configured to select an applet provisioned on a device secure element that is assigned to the wireless transaction group identifier, the assigning being based at least in part on the received list. The at least one processor is further configured to utilize the selected applet to perform a wireless transaction with the wireless transaction device.
Abstract:
To facilitate conducting a financial transaction via wireless communication between an electronic device and another electronic device, the electronic device determines a unique transaction identifier for the financial transaction based on financial-account information communicated to the other electronic device. The financial-account information specifies a financial account that is used to pay for the financial transaction. Moreover, the unique transaction identifier may be capable of being independently computed by one or more other entities associated with the financial transaction (such as a counterparty in the financial transaction or a payment network that processes payment for the financial transaction) based on the financial-account information communicated by the portable electronic device. The electronic device may also associate receipt information, which is subsequently received from a third party (such as the payment network), with the financial transaction by comparing the determined unique transaction identifier to the computed unique transaction identifier.
Abstract:
Systems, methods, and computer-readable media for managing near field communications during a low power management mode of an electronic device are provided that may make credentials of a near field communication (“NFC”) component appropriately secure and appropriately accessible while also limiting the power consumption of the NFC component and of other components of the electronic device.
Abstract:
A device for controlled identity credential release may include at least one processor configured to receive a request to release an identity credential of a user, the identity credential being stored on the device. The at least one processor may be further configured to authenticate the user associated with the identity credential. The at least one processor may be further configured to, responsive to the authentication, provide at least a portion of the identity credential, such as for display and/or to a terminal device over a direct wireless connection. The at least one processor may be further configured to cause the electronic device to enter a locked state and/or to remain in a locked state, responsive to providing the at least the portion of the identity credential.
Abstract:
An electronic device (such as a cellular telephone) automatically installs and personalizes updates to an applet on a secure element in the electronic device. In particular, when a digitally signed update package containing the update is received from an updating device (such as a server), the secure element identifies any previous versions of the applet installed on the secure element. If there are any previously installed versions, the secure element verifies the digital signature of the update package using an encryption key associated with a vendor of the secure element. Then, the secure element uninstalls the previous versions of the applet and exports the associated user data. Next, the secure element installs the update to the applet, and personalizes the new version of the applet using the user data.