Abstract:
A method of making a silicone gel adhesive is described comprising providing an acrylic polymer, the acrylic polymer comprising at least 50 wt.-% of polymerized units of C1-C32 (meth)acrylate ester monomer; providing at least one non-functional polydiorganosiloxane, hydroxy-functional polydiorganosiloxane, or a mixture thereof; combining the acrylic polymer and polydiorganosiloxane into a mixture; coating the mixture onto a substrate, and subjecting the mixture to radiation thereby crosslinking the mixture. Also described is a silicone gel adhesive comprising a crosslinked material at least one non-functional polydiorganosiloxane, hydroxy-functional polydiorganosiloxane, or a mixture thereof; and an acrylic polymer comprising at least 50 wt.-% of polymerized units of alkyl (meth)acrylate monomers and a gel content of at least 20 wt.-%. Also described is a medical article or intermediate thereof, comprising a layer of the silicone gel adhesive described herein adhered to a substrate; and methods of adhering a medical article.
Abstract:
Disclosed herein are methods that include contacting a skin surface with a first liquid composition; and then contacting in the skin surface with a cationic coated article loaded with a second liquid composition, while at least some portion of the first liquid composition remains on the skin surface, wherein one or both of the first liquid composition or the second liquid composition includes acrylate copolymer particles dispersed therein, the acrylate copolymer particles including the reaction product of a reaction mixture, the reaction mixture including monomers, the monomers including from about 5 wt % to about 50 wt % of at least one high Tg monomer where the wt % of the high Tg monomer is with respect to the total weight of the monomers in the reaction mixture; and from about 20 wt % to about 80 wt % of at least one low Tg monomer where the wt % of the low Tg monomer is with respect to the total weight of the monomers in the reaction mixture, wherein the particles have a number average diameter of at least about 100 nm and wherein at least one and only one of the first or the second composition comprises greater than or equal to 60 wt % of at least one alcohol.
Abstract:
A hand-tearable masking tape, comprising a plastic backing with a low adhesion backsize on the first major side of the backing and a pressure-sensitive adhesive on the second major side of the backing; wherein the second major side of the backing comprises a microstructured hand-tear pattern and wherein the low adhesion backsize comprises the reaction product of a mercapto-functional silicone macromer.
Abstract:
A hand-tearable masking tape, comprising a plastic backing with a low adhesion backsize on the first major side of the backing and a pressure-sensitive adhesive on the second major side of the backing; wherein the second major side of the backing comprises a microstructured hand-tear pattern and wherein the low adhesion backsize comprises the reaction product of a mercapto-functional silicone macromer.
Abstract:
Copolymers containing at least one perfluoropolyether segment and multiple aminooxalylamino groups are described. Methods of making the copolymers are also described. The copolymers can be prepared by reacting an oxalylamino-containing compound and an amine compound having at least two primary amino groups, at least two secondary amino groups, or at least one primary amino group plus at least one secondary amino group.
Abstract:
Blended release materials including a blend of a fluoro-functional silicone release polymer and a fluoropolymer are described. Exemplary fluoropolymers include fluoroolefin-based polymers and linear fluoropolymers including linear fluoroacryaltes. Articles including such release materials such as release liners, and adhesive articles, including silicone adhesive articles, are also described.
Abstract:
A method of making a release coated article is described comprising: providing a release coating composition comprising at least 50 wt. % of a mixture of ethylenically unsaturated monomers based on the total ethylenically unsaturated components; wherein the mixture comprises monomer(s) with a linear alkyl group with at least 18 carbon atoms, and monomer(s) with a branched alkyl group with 7 to 31 carbon atoms, and crosslinking component(s) comprising at least two ethylenically unsaturated groups. The method comprises applying the release coating to a major surface of a substrate and polymerizing the monomer(s) and crosslinking component(s) of the release coating. The monomer(s) with linear alkyl groups and branched alkyl groups are typically present at a weight ratio such that the release coating is a liquid at 25° C. Also described are release coating compositions and articles.
Abstract:
A composition, and article including such composition, wherein the composition includes a silsesquioxane polymer and a free siloxane; wherein the silsesquioxane polymer includes a three-dimensional network of Formula (I): wherein: each R1 and R2 is independently a (C1-C4)alkyl; each L1 and L2 is independently a single bond, an alkylene, or an alkylene bonded to a group selected from oxy, thio, carbonyl, —NH—, and combinations thereof; each R3 is independently a linear (C14-C100)alkyl; each R5 is independently a (C1-C30)alkyl, a (C1-C30)fluorinated alkyl, or a (C2-C30)heteroalkyl having at least one oxygen, sulfur, or —NH— group; with the proviso that L1, L2, and R5 are selected such that each Si atom is directly bonded to an alkylene or an alkyl; m is an integer of at least 2; n is an integer of 0 or above; m+n is an integer of at least 10; each oxygen atom at an asterisk (*) is bonded to another Si atom within the three-dimensional network; and the silsesquioxane polymer is a solid at 25° C.
Abstract:
Methods for preparing silicone-containing polymers by essentially adiabatic polymerization methods are disclosed. The polymerization system includes free radically polymerizable monomers. The monomers include ethylenically unsaturated silicone-containing monomers and/or mercapto-functional silicones as well as additional free radically polymerizable monomers. The silicone-containing polymers are useful as adhesives or release materials.
Abstract:
Disclosed herein are compositions that include at least about 85 wt % of a hydroalcoholic solution that includes at least about 1 wt % water; and about 30 to about 85 wt % of at least one C1 to C4 alkyl alcohol based on the total weight of the hydroalcoholic solution; and acrylate copolymer particles dispersed in the hydroalcoholic solution, the acrylate copolymers particles being the reaction product of a reaction mixture, the reaction mixture including monomers, the monomers including from about 5 wt % to about 50 wt % of at least one high Tg monomer; and from about 20 w % to about 80 wt % of at least one low Tg monomer where the wt % of the low and high Tg monomers are with respect to the total weight of the monomers in the reaction mixture, wherein the particles have a number average diameter of at least about 100 nm.