Abstract:
A color pixel array includes first, second, and third pluralities of color pixels each including a photosensitive region disposed within a first semiconductor layer. In one embodiment, a second semiconductor layer including deep dopant regions is disposed below the first semiconductor layer. The deep dopant regions each reside below a corresponding one of the first plurality of color pixels but substantially not below the second and third pluralities of color pixels. In one embodiment, buried wells are disposed beneath the second and third pluralities of color pixels but substantially not below the first plurality of color pixels.
Abstract:
A backside illuminated imaging sensor includes a semiconductor having an imaging pixel that can include a photodiode region, an insulation layer, and a reflective layer. The photodiode is typically formed in the frontside of the semiconductor substrate. A surface shield layer can be formed on the frontside of the photodiode region. A light reflecting layer can be formed using silicided polysilicon on the frontside of the sensor. The photodiode region receives light from the back surface of the semiconductor substrate. When a portion of the received light propagates through the photodiode region to the light reflecting layer, the light reflecting layer reflects the portion of light received from the photodiode region towards the photodiode region. The silicided polysilicon light reflecting layer also forms a gate of a transistor for establishing a conductive channel between the photodiode region and a floating drain.
Abstract:
A color pixel array includes first, second, and third pluralities of color pixels each including a photosensitive region disposed within a first semiconductor layer. In one embodiment, a second semiconductor layer including deep dopant regions is disposed below the first semiconductor layer. The deep dopant regions each reside below a corresponding one of the first plurality of color pixels but substantially not below the second and third pluralities of color pixels. In one embodiment, buried wells are disposed beneath the second and third pluralities of color pixels but substantially not below the first plurality of color pixels.
Abstract:
An integrated circuit system includes a first device wafer having a first semiconductor layer proximate to a first metal layer including a first conductor disposed within a first metal layer oxide. A second device wafer having a second semiconductor layer proximate to a second metal layer including a second conductor is disposed within a second metal layer oxide. A frontside of the first device wafer is bonded to a frontside of the second device wafer at a bonding interface. A conductive path couples the first conductor to the second conductor through the bonding interface. A first metal EMI shield is disposed in one of the first metal oxide layer and second metal layer oxide layer. The first EMI shield is included in a metal layer of said one of the first metal oxide layer and the second metal layer oxide layer nearest to the bonding interface.
Abstract:
Embodiments of a semiconductor device that includes a semiconductor substrate and a cavity disposed in the semiconductor substrate that extends at least from a first side of the semiconductor substrate to a second side of the semiconductor substrate. The semiconductor device also includes an insulation layer disposed over the first side of the semiconductor substrate and coating sidewalls of the cavity. A conductive layer including a bonding pad is disposed over the insulation layer. The conductive layer extends into the cavity and connects to a metal stack disposed below the second side of the semiconductor substrate. A through silicon via pad is disposed below the second side of the semiconductor substrate and connected to the metal stack. The through silicon via pad is position to accept a through silicon via.
Abstract:
Embodiments of an image sensor pixel that includes a photosensitive element, a floating diffusion region, and a transfer device. The photosensitive element is disposed in a substrate layer for accumulating an image charge in response to light. The floating diffusion region is dispose in the substrate layer to receive the image charge from the photosensitive element. The transfer device is disposed between the photosensitive element and the floating diffusion region to selectively transfer the image charge from the photosensitive element to the floating diffusion region. The transfer device includes a buried channel device including a buried channel gate disposed over a buried channel dopant region. The transfer device also includes a surface channel device including a surface channel gate disposed over a surface channel region. The surface channel device is in series with the buried channel device. The surface channel gate has the opposite polarity of the buried channel gate.
Abstract:
Embodiments of an apparatus comprising a pixel array comprising a plurality of macropixels. Each macropixel includes a pair of first pixels each including a color filter for a first color, the first color being one to which pixels are most sensitive, a second pixel including a color filter for a second color, the second color being one to which the pixels are least sensitive and a third pixel including a color filter for a third color, the third color being one to which pixels have a sensitivity between the least sensitive and the most sensitive, wherein the first pixels each occupy a greater proportion of the light-collection area of the macropixel than either the second pixel or the third pixel. Corresponding process and system embodiments are disclosed and claimed.
Abstract:
A backside illuminated (“BSI”) complementary metal-oxide semiconductor (“CMOS”) image sensor includes a photosensitive region disposed within a semiconductor layer and a stress adjusting layer. The photosensitive region is sensitive to light incident on a backside of the BSI CMOS image sensor to collect an image charge. The stress adjusting layer is disposed on a backside of the semiconductor layer to establish a stress characteristic that encourages photo-generated charge carriers to migrate towards the photosensitive region.
Abstract:
An image sensor pixel includes a substrate, a first epitaxial layer, a collector layer, a second epitaxial layer and a light collection region. The substrate is doped to have a first conductivity type. The first epitaxial layer is disposed over the substrate and doped to have the first conductivity type as well. The collector layer is selectively disposed over at least a portion of the first epitaxial layer and doped to have a second conductivity type. The second epitaxial layer is disposed over the collector layer and doped to have the first conductivity type. The light collection region collects photo-generated charge carriers and is disposed within the second epitaxial layer. The light collection region is also doped to have the second conductivity type.
Abstract:
A technique for fabricating an image sensor including a pixel circuitry region and a peripheral circuitry region includes fabricating front side components on a front side of the image sensor. A dopant layer is implanted on a backside of the image sensor. A anti-reflection layer is formed on the backside and covers a first portion of the dopant layer under the pixel circuitry region while exposing a second portion of the dopant layer under the peripheral circuitry region. The first portion of the dopant layer is laser annealed from the backside of the image sensor through the anti-reflection layer. The anti-reflection layer increases a temperature of the first portion of the dopant layer during the laser annealing.