摘要:
The present invention is directed towards systems and methods for maintaining Certificate Revocation Lists (CRLs) for client access in a multi-core system. A first core may generate a secondary CRL corresponding to a master CRL maintained by the first core. The CRLs may identify certificates to revoke. The first core can store the secondary CRL to a memory element accessible by the cores. A second core may receive a request to validate a certificate. The second core can provisionally determine, via access to the secondary CRL, whether the certificate is revoked. The second core may also determine not to revoke the certificate. Responsive to the determination, the second core may request the first core to validate the certificate. The first core can determine whether to revoke the certificate based on the master CRL. The first core may send a message to the second core based on the determination.
摘要:
The present invention is directed towards systems and methods for managing SSL session persistence and reuse in a multi-core system. A first core may indicate that an SSL session established by the first core is non-resumable. Responsive to the indication, the core may set an indicator at a location in memory accessible by each core of the multi-core system, the indicator indicating that the SSL session is non-resumable. A second core of the multi-core system may receive a request to reuse the SSL session. The request may include a session identifier of the SSL session. In addition, the session identifier may identify the first core as an establisher of the SSL session. The second core can identify from encoding of the session identifier whether the second core is not the establisher of the SSL session. Responsive to the identification, the second core may determine whether to resume the SSL session.
摘要:
Systems and methods are disclosed for an appliance to authenticate access of a client to a protected directory on a server via a connection, such as a secure SSL connection, established by the appliance. A method comprises the steps of: receiving, by an appliance, a first request from a client on a first network to access a server on a second network, the appliance providing the client a virtual private network connection from the first network to the second network; determining, by the appliance, the first request comprises access to a protected directory of the server; associating, by the appliance, an authentication policy with the protected directory, the authentication policy specifying an action to authenticate the client's access to the protected directory; and transmitting, by the appliance in response to the authentication policy, a second request to the client for an authentication certificate. Corresponding systems are also disclosed.
摘要:
The present invention is directed towards systems and methods for managing SSL session persistence and reuse in a multi-core system. A first core may indicate that an SSL session established by the first core is non-resumable. Responsive to the indication, the core may set an indicator at a location in memory accessible by each core of the multi-core system, the indicator indicating that the SSL session is non-resumable. A second core of the multi-core system may receive a request to reuse the SSL session. The request may include a session identifier of the SSL session. In addition, the session identifier may identify the first core as an establisher of the SSL session. The second core can identify from encoding of the session identifier whether the second core is not the establisher of the SSL session. Responsive to the identification, the second core may determine whether to resume the SSL session.
摘要:
A method for buffering SSL handshake messages prior to computing a message digest for the SSL handshake includes: conducting, by an appliance with a client, an SSL handshake, the SSL handshake comprising a plurality of SSL handshake messages; storing, by the appliance, the plurality of SSL handshake messages; providing, by the appliance to a message digest computing device in response to receiving a client finish message corresponding to the SSL handshake, the plurality of SSL handshake messages; receiving, by the appliance from the message digest computing device, a message digest corresponding to the provided messages; determining by the appliance, the message digest matches a message digest included in the SSL client finish message; and completing, by the appliance with the client, the SSL handshake. Corresponding systems are also described.
摘要:
The present invention is directed towards systems and methods for determining a status of a client certificate from a plurality of responses for an Online Certificate Status Protocol (OCSP) request. An intermediary device between a plurality of clients and one or more servers identifies a plurality of OCSP responders for determining a status of a client certificate responsive to receiving the client certificate from a client during a Secure Socket Layer (SSL) handshake. Each of the plurality of OCSP responders may transmit a request for the status of the client certificate to a uniform resource locator corresponding to each OCSP responder. The intermediary device may determine a single status for the client certificate from a plurality of statuses of the client certificate received via responses from each uniform resource locator.
摘要:
A method for using a network appliance to efficiently buffer and encrypt data for transmission includes: receiving, by an appliance via a connection, two or more SSL records comprising encrypted messages; decrypting the two or more messages; buffering, by the appliance, the two or more decrypted messages; determining, by the appliance, that a transmittal condition has been satisfied; encrypting, by the appliance in response to the determination, the first decrypted message and a portion of the second decrypted message to produce a third SSL record; and transmitting, by the appliance via a second connection, the third record. Corresponding systems are also described.
摘要:
A method for using a network appliance to efficiently buffer and encrypt data for transmission includes: receiving, by an appliance via a connection, two or more SSL records comprising encrypted messages; decrypting the two or more messages; buffering, by the appliance, the two or more decrypted messages; determining, by the appliance, that a transmittal condition has been satisfied; encrypting, by the appliance in response to the determination, the first decrypted message and a portion of the second decrypted message to produce a third SSL record; and transmitting, by the appliance via a second connection, the third record. Corresponding systems are also described.
摘要:
The present invention is directed towards systems and methods for processing an Online Certificate Status Protocol (OCSP) request in parallel to processing a Secure Socket Layer (SSL) handshake. The method includes transmitting, by an OCSP responder of an intermediary device between a plurality of clients and one or more servers, an OCSP request to a OCSP server for a status of a client certificate responsive to receiving the client certificate from a client during a SSL handshake. The intermediary device may continue to perform remaining portions of the SSL handshake while the OCSP request to the OCSP server is outstanding. The intermediary device may establish an SSL connection for the SSL handshake. The intermediary device may determine whether to terminate or maintain the established SSL connection based on the status of the client certificate received via a response from the OCSP server.
摘要:
The present invention is directed towards systems and methods for managing SSL session persistence and reuse in a multi-core system. A first core may indicate that an SSL session established by the first core is non-resumable. Responsive to the indication, the core may set an indicator at a location in memory accessible by each core of the multi-core system, the indicator indicating that the SSL session is non-resumable. A second core of the multi-core system may receive a request to reuse the SSL session. The request may include a session identifier of the SSL session. In addition, the session identifier may identify the first core as an establisher of the SSL session. The second core can identify from encoding of the session identifier whether the second core is not the establisher of the SSL session. Responsive to the identification, the second core may determine whether to resume the SSL session.