Abstract:
A display apparatus includes a display panel, a light source, a polarizer, and a transparent reflective element. The display panel includes a color filter including a first portion and a second portion in a pixel area. The first portion has a first light transmittance. The second portion has a second light transmittance higher than the first light transmittance. The light source provides a light to the display panel. The polarizer is disposed between the light source and the display. The polarizer polarizes the light. The transparent reflective element is spaced apart from the display panel. The transparent reflective element reflects an image provided from the display panel.
Abstract:
A portable electrocardiogram monitor includes: an upper housing and a lower housing coupled to each other via a hinge; and a positive electrode formed on lateral sides of the upper and lower housings, which are disposed opposite sides centering on the hinge.
Abstract:
A display substrate includes a base substrate, color filter layers, a bottom supporting layer and a light-blocking and maintaining element. The base substrate includes a gate line, a data line crossing the gate line, and a switching element on the base substrate. The color filter layers are adjacent to each other on the base substrate. The bottom supporting layer is between the color filter layers adjacent to each other and on the base substrate. The light-blocking and maintaining element is between the color filter layers adjacent to each other, and on the bottom supporting layer. The light-blocking and maintaining element includes a light blocking portion, and a maintaining portion which overlaps the bottom supporting layer and protrudes from the light blocking portion.
Abstract:
Provided is an imaging lens. The imaging lens includes a first lens having a positive (+) power, a second lens having a positive (+) power, a third lens having a negative (−) power, and a fourth lens having a positive (+) power. The first lens, the second lens, the third lens, and the fourth lens are sequentially disposed from an object to transmit an image of light having a wavelength band of about 400 nm to about 1,000 nm. Thus, powers, distances, and Abbe's numbers of the first to fourth lenses may be controlled to photograph an image of visible light and infrared light.
Abstract:
Provided are a method and system for controlling light by using an image code. The method includes displaying an image code on a display unit; acquiring information relating to light settings by recognizing the image code; determining apparatus information and lighting state information by using information relating to the light settings; and transmitting a light request message for requesting light settings according to the lighting state information to the lighting apparatus having apparatus information that is equal to the apparatus information of the image code.
Abstract:
A method of inputting a user command on a display using an electronic pen includes emitting light in the direction of the display using a light source of the electronic pen and capturing the display with a camera of the electronic pen. The method includes recognizing a Black Matrix (BM) pattern of the display in the captured image and detecting a location on the display at which the light from the light source is emitted by comparing the recognized BM pattern with pre-stored patterns.
Abstract:
A thin film transistor array panel including a substrate, gate lines and data lines formed on the substrate, and thin film transistors each with a control terminal, an input terminal, and an output terminal. The control and input terminals of the thin film transistor are connected to the gate and data lines. A barrier rib is formed on the gate lines, the data lines, and the thin film transistors. The output terminal of the thin film transistor has an opening, and a portion of the barrier rib formed on the output terminal has an output opening. The barrier rib output terminal portion has the same pattern as the output terminal. A barrier rib for forming contact holes is formed through exposing an organic layer formed on a passivation layer to light from the backside of a substrate using drain electrodes with openings as a light blocking film.
Abstract:
A method and a mobile device are adapted to transmit data through short-range communication based on movement of the mobile device. External mobile devices near the mobile device are searched. Location information for each external mobile device found near the mobile device is acquired. Data to be transmitted is set. The movement of the mobile device is recognized. At least one target mobile device is set to receive data, based on the movement of the mobile device and the acquired location information of the found external mobile devices. And the data is transmitted to the at least one target mobile device.
Abstract:
A plasma generator is provided which includes: a microwave generation portion which generates a microwave; a wave guide for propagating the microwave; a plurality of plasma generation nozzles which are attached to the wave guide so as to be apart from each other in the direction where the microwave is propagated, receive the microwave, and generate and emit a plasmatic gas based on the energy of this microwave; and a plurality of stabs which correspond to a part or the whole part of the plasma generation nozzles and are each disposed in the wave guide so as to lie in a rear position a predetermined distance apart from each other in the direction where the microwave is propagated.
Abstract:
A display substrate includes a substrate on which a first pixel area including a first light-blocking region, and a second pixel area adjacent to the first pixel area and including a second light-blocking region are defined, an insulating layer in the first and second light-blocking regions, a black matrix pattern layer on the insulating layer, a first column spacer in the first light-blocking region and protruding from the black matrix pattern layer, and a second column spacer in the second light-blocking region and protruding from the black matrix pattern layer. A height of a top surface of the first column spacer is different from a height of a top surface of the second column spacer, where the heights are taken with respect to the substrate.