Abstract:
A multi-stage magnetized water generator, includes: a housing; an inlet cap which is provided at an upper end of the housing and allows water to be introduced into the housing; a rotor provided in the housing to rotate water while being rotated by water inflowing through the inlet cap; a plurality of magnets which are provided in the rotor and come into contact with the water being rotated to magnetize the water; and an outlet cap which is provided at a lower end of the housing and allows the magnetized water to be discharged to an outside.
Abstract:
The present disclosure provides an RF power device including: a single RF power transistor; a pad spaced apart from the single RF power transistor and configured to transmit a temperature and RF characteristic information of the single RF power transistor to an outside; and a temperature and RF characteristic detector connected between the pad and the ground and configured to detect the temperature and the RF characteristics of the single RF power transistor, and is characterized in that the ground is connected to the single RF power transistor, and the single RF power transistor, the pad, and the temperature and RF characteristic detector are manufactured on the same wafer.
Abstract:
An apparatus for displaying acupuncture points according to the present invention recognizes a curved surface of a human body via 3D scanning, and then sets acupuncture points corresponding to the body surface that has been recognized to project them onto the body. More specifically, the apparatus for displaying acupuncture points comprises: a 3D scanner for performing 3D scanning; a control unit for setting acupuncture points by using the data that has been scanned by the 3D scanner; and a projection unit for projecting the acupuncture points that have been set by the control unit onto the body. Accordingly, the present invention allows accurate selection of acupuncture points on a highly curved surface of a human body.
Abstract:
Disclosed is an optical system. The optical system includes first to fifth lenses sequentially arranged from an object side to an image side. The optical system satisfies 1.5
Abstract:
A plasma generating system is provided. The plasma generating system includes: a pair of electrodes having distal ends; an electrode holder holding the pair of electrodes; a gate having a surface on which the electrode holder is slidably mounted and adapted to be controlled by sliding the electrode holder on the surface; and a resilient member secured to the gate and adapted to generate a force to close the opening. The distal ends are adapted to move into an opening of the gate as the electrode holder slides along a direction on the surface and adapted to generate an electric arc to thereby ignite plasma in a gas.
Abstract:
A dimming controlling apparatus including: a lighting driving unit for driving a lighting appliance; a power supply unit for supplying power required to drive the lighting appliance; a storage unit for storing a plurality of dimming profiles including time zones for driving the lighting appliance and dimming levels in accordance to the time zones; and a controller for controlling the lighting driving unit and the power supply unit by using the dimming profiles. An operating time of the lighting appliance is divided into a plurality of time zones, and dimming profiles are generated to include an intensity of illumination for driving the lighting appliance in each of the plurality of time zones and each of the time zones.
Abstract:
By focusing on the fact that nitrogen dioxide exhibits an increased sterilizing effect among other sterilant gases including nitrogen oxide, the present invention is made to provide a sterilization method which may be suitably used for sterilizing items to be sterilized such as medical instruments which require increased reliability by using a high concentration NO2 gas of 5,000 ppm or above, for example. An inside of a sterilizing chamber containing an item to be sterilized is humidified, and a concentration of NO2 in the sterilizing chamber is made to be from 9 to 100 mg/L by filling a high concentration NO2 gas.
Abstract:
An optical modulator unit, an optical modulator, and a method of fabricating are provided. The optical modulator unit includes a first contact layer transmitting infrared rays, a lower reflection layer disposed on the first contact layer, an active layer, including a multiple quantum well, disposed on the lower reflection layer, and an upper reflection layer disposed on the active layer. The optical modulator includes a plurality of optical modulator units sharing the first contact layer. The method includes sequentially stacking a first contact layer, a lower reflection layer, an active layer, an upper reflection layer, and a second contact layer on a substrate; etching the second contact layer, the upper reflection layer, the active layer, and the lower reflection layer, exposing a surface of the first contact layer; forming a first electrode on the first contact layer; and forming a second electrode on the second contact layer.
Abstract:
Provided are a touch screen-embedded liquid crystal display panel and a method of manufacturing the same in accordance with one or more embodiments. The touch screen-embedded liquid crystal display panel may include, for example, a transparent first substrate; a second substrate which faces the first substrate; a conductive spacer and a cell-gap spacer which are formed on the first substrate; and a common electrode which is formed on the second substrate and has an aperture in a region that contacts the cell-gap spacer on the first substrate.
Abstract:
A high concentration NO2 gas generating system including a circulating path configured by connecting a chamber, a plasma generator, and a circulating means, wherein NO2 is generated by circulating a gas mixture including nitrogen and oxygen in the circulating path is provided. The high concentration NO2 gas generating system provides a high concentration NO2 generating system and the high concentration NO2 generating method using the generating system by which NO2 of high concentration (approximately 500 ppm or above) required for a high level of sterilization process in such as sterilization of medical instruments can be simply and selectively obtained. In addition, since indoor air is used as an ingredient, the management of ingredients is simple and highly safe, and the high concentration of NO2 can be simply and selectively prepared on demand.