Abstract:
Optical devices using an organic charge transfer salt as the switching and storage media are disclosed. Generally, a light beam of a given intensity directed to a film of certain organic charge transfer salts causes the illuminated area to change from a first to a second state. This electrochemical process is reversible with heat energy transforming the illuminated area back into the first state. The first and second states have identifiably different optical and electrical properties. The organic charge transfer salt is used to fabricate an erasable or permanent optical memory and a threshold on bistable optoelectronic switch.
Abstract:
Optical devices using an organic charge transfer salt as the switching and storage media are disclosed. Generally, a light beam of a given intensity directed to a film of certain organic charge transfer salts causes the illuminated area to change from a first to a second state. This electrochemical process is reversible with heat energy transforming the illuminated area back into the first state. The first and second states have identifiably different optical and electrical properties. The organic charge transfer salt is used to fabricate an erasable or permanent optical memory and a threshold on bistable optoelectronic switch.
Abstract:
A current-controlled, bistable threshold or memory switch comprises a polycrystalline metal-organic semiconductor sandwiched between metallic electrodes. Films of either copper or silver complexed with TNAP, DDQ, TCNE, TCNQ, derivative TCNQ molecules, or other such electron acceptors provides switching between high and low impedance states with combined delay and switching times on the order of 1 nanosecond. Switching behavior of a complex of the present invention is related to the reduction potential of the acceptor molecule.Various other modifications, adaptations and alterations are of course possible in light of the above teachings. Therefore, it should be understood at this time that within the scope of the appended claims the invention may be practiced otherwise than as specifically described.
Abstract:
A current-controlled, bistable threshold or memory switch comprises a polycrystalline metal-organic semiconductor sandwiched between metallic electrodes. Films of either copper or silver complexed with TNAP, DDQ, TCNE, TCNQ, derivative TCNQ molecules, or other such electron acceptors provides switching between high and low impedance states with combined delay and switching times on the order of 1 nanosecond. Switching behavior of a complex of the present invention is related to the reduction potential of the acceptor molecule.