Abstract:
An inkjet print head and a method for manufacturing the same are provided. The inkjet print head includes: an upper board having a pressure chamber; and a lower board including an upper silicon layer, an insulating layer, and a lower silicon layer, wherein the lower board includes a projection formed of the upper silicon layer and protruded into the interior of the pressure chamber in order to reduce the space of the pressure chamber, and a lower surface of the upper board and an upper surface of the lower silicon layer are fixed.
Abstract:
A nozzle plate for an inkjet head and a method of manufacturing the nozzle plate includes a silicon substrate having a nozzle, a thermally oxidized silicon layer formed on an outer surface of the silicon substrate and an inner wall of the nozzle, an adhesion layer deposited on the thermally oxidized silicon layer formed on the outer surface of the silicon substrate and formed of silicon oxide, and an ink-repellent coating layer deposited on the adhesion layer.
Abstract:
An inkjet head includes an ink chamber, a pressure chamber and a piezoelectric member. The ink chamber includes an ink storage area storing ink, a plurality of dampers filled with the ink to be discharged, and a plurality of nozzles connected to the dampers and discharging the ink. The pressure chamber is disposed on the ink chamber, overlapping at least two of the plurality of dampers, and includes a pressure transmitting medium. The piezoelectric member is disposed on the pressure chamber. The ink is discharged from the nozzles in substantially a same amount through control of a single piezoelectric member at one time.
Abstract:
A piezoelectric actuator includes a first electrode layer, a piezoelectric layer and a second electrode layer. The first electrode layer is formed on a vibration plate. The piezoelectric layer is formed on the first electrode layer, the piezoelectric layer comprising piezoelectric particles formed on the surface of a self-assembled monolayer. The second electrode layer is formed on the piezoelectric layer to face the first electrode layer. Thus, a self-assembled monolayer is formed, so that the piezoelectric characteristics of a piezoelectric layer and/or the stiffness of the piezoelectric layer may be increased. Thus, piezoelectric characteristics of the piezoelectric actuator may be enhanced, and the required voltage, which is required to realize a proper deformation amount of the piezoelectric actuator, may be decreased. Moreover, the stiffness of the piezoelectric actuator may be increased, so that the vibration remaining at the piezoelectric actuator may be minimized even though the driving is finished.
Abstract:
A piezoelectric inkjet printhead including an upper substrate, having an ink inlet, a manifold connected with the ink inlet, and a plurality of pressure chambers arranged along at least one side of the manifold, wherein the ink inlet passes through the upper substrate, and the manifold and the pressure chambers are formed in a lower surface of the upper substrate, a lower substrate disposed directly adjacent the upper substrate, the lower substrate having a plurality of restrictors each connecting the manifold with one end of each of the pressure chambers, and a plurality of nozzles each being formed in a position of the lower substrate that corresponds to the other end of each of the pressure chambers to vertically pass through the lower substrate, wherein the plurality of restrictors are formed in an upper surface of the lower substrate, and a plurality of piezoelectric actuators.
Abstract:
A piezoelectric actuator of an inkjet head and a method of forming the piezoelectric actuator. The piezoelectric actuator is formed on a vibration plate to provide a driving force to each of a plurality of pressure chambers. The piezoelectric actuator includes a lower electrode formed on the vibration plate, a piezoelectric layer formed on the lower electrode at a position corresponding to each of the pressure chambers, a supporting pad formed on the lower electrode, the supporting pad contacting one end of the piezoelectric layer and extending away from the one end of the piezoelectric layer, and an upper electrode extending from a top surface of the piezoelectric layer to a top surface of the supporting pad. The upper electrode is bonded to a driving circuit above the supporting pad to receive a voltage from the driving circuit. The piezoelectric layer may have substantially the same length as the pressure chamber. The supporting pad may be formed of a photosensitive polymer and may have substantially the same height as the piezoelectric layer. The upper electrode may include a first portion formed on the piezoelectric layer and a second portion formed on the supporting pad, and the second portion may be wider than the first portion.
Abstract:
A silicon wet etching method to form at least two elements having different shapes in a silicon substrate using at least two wet etching processes includes forming a first etch mask made of parylene on a surface of the silicon substrate, forming a first element in the substrate by wet etching the silicon substrate for a first time using the first etch mask, forming a second etch mask made of a silicon oxide layer on the surface of the silicon substrate, and forming a second element by wet etching the silicon substrate for a second time using the second etch mask.
Abstract:
A method of forming nozzles in an inkjet printhead including forming ink inlets in a first surface of a substrate, polishing a second surface of the substrate after the forming of the ink inlets, and forming ink outlets in the second surface of the substrate after the polishing of the second surface, the ink outlets communicating with the ink inlets.
Abstract:
An inkjet print head and a method for manufacturing the same are provided. The inkjet print head includes: an upper board having a pressure chamber; and a lower board including an upper silicon layer, an insulating layer, and a lower silicon layer, wherein the lower board includes a projection formed of the upper silicon layer and protruded into the interior of the pressure chamber in order to reduce the space of the pressure chamber, and a lower surface of the upper board and an upper surface of the lower silicon layer are fixed.
Abstract:
There is provided an inkjet print head, including: a first substrate in which a first restrictor and a pressure chamber are formed; and a second substrate in which a manifold, a second restrictor, and a nozzle are formed, wherein the first restrictor is connected to the manifold and the second restrictor, and the second restrictor is connected to the first restrictor and the pressure chamber.