摘要:
Disclosed is a bimodal Ziegler-Natta catalyzed polyethylene, having a density of from 0.930 g/cc to 0.960 g/cc, and a molecular weight distribution of from 10 to 25, wherein an article formed therefrom has a PENT of at least 1500. Also disclosed is a method of preparing a tubular article including obtaining a bimodal polyethylene having a density of from 0.930 g/cc to 0.960 g/cc and a molecular weight distribution of from 10 to 25, and processing the polyethylene under conditions where a specific energy input (SEI) is less than 300 kW·h/ton, and wherein the article has a PENT of at least 1500. Further disclosed is a method for controlling the degradation of polyethylene including polymerizing ethylene monomer, recovering polyethylene, extruding the polyethylene, and controlling the degradation of polyethylene by measuring the SEI to the extruder and adjusting throughput and/or gear suction pressure keep SEI less than 300 kW·h/ton, and forming an article.
摘要:
Polymer articles and processes of forming the same are described herein. The processes generally include providing a bimodal ethylene based polymer, blending the bimodal ethylene based polymer with a nucleator to form modified polyethylene and forming the modified polyethylene into a polymer article, wherein the polymer article is selected from pipe articles and blown films.
摘要:
This invention relates to high density polyethylene blown films having good barrier properties and improved processing characteristics. The method incorporates the use of peroxide which results in improved bubble stability without sacrifice in barrier properties. The polyethylenes have a density greater than about 0.950 g/cc, are relatively narrow in molecular weight distribution MWD (in the range of from about 2.0 to about 6.5), and are of medium molecular weight. In an embodiment, the films also have a rheological breadth parameter, a, that has been reduced by at least about 5%, but not more than 45%, by addition of a peroxide to the polyethylene. The addition of peroxide improves processability without sacrificing strength and barrier properties such as oxygen transmission rate.
摘要:
Applicants have discovered that certain polyethylene (PE) homopolymers or copolymers of ethylene and C3 to C10 alpha-olefin monomers are more suitable for oriented processes than other polyethylene resins In an aspect, the PE has a MFI of 0.3 g/10 min. to 5.0 g/10 min., a melting point of from 110° C. to 140° C., a density of from 0.912 g/cm3 to 0.965 g/cm3(%), a haze of 10% or less, a clarity of at least 90, and a gloss of at least 60. The polyethylene is heated and formed into an article, cooled, and then the article is stretch oriented. In an embodiment, the film, tape, the melt extruded, injection blow molded, injection stretch blow molded, cast, and thermoformed articles that can be produced with this polyethylene has a thickness of 0.1 mil to 100 mils. The polyethylene exhibits excellent elasticity, toughness, stretch and optical properties for such applications.
摘要翻译:申请人已经发现,某些聚乙烯(PE)均聚物或乙烯和C 3 C 3 C 10 C 10α-烯烃单体的共聚物比其他聚乙烯树脂更适合取向过程 方面,PE的MFI为0.3g / 10min。 至5.0g / 10min,熔点为110℃至140℃,密度为0.912g / cm 3至0.965g / cm 3, (%),10%以下的雾度,至少90的澄清度,以及至少60的光泽度。将聚乙烯加热制成制品,冷却,然后将制品拉伸取向。 在一个实施方案中,可以用该聚乙烯生产的膜,带,熔体挤出,注射吹塑,注射拉伸吹塑,铸造和热成型制品的厚度为0.1密耳至100密耳。 聚乙烯表现出优异的弹性,韧性,拉伸性和光学性能。
摘要:
To accommodate telephones of different base lengths, the under-phone telephone index has housing parts which are telescopingly connected together so that the support area formed by the upper surface can be extended or contracted.
摘要:
Disclosed is a bimodal Ziegler-Natta catalyzed polyethylene, having a density of from 0.930 glee to 0.960 glee, and a molecular weight distribution of from 10 to 25, wherein an article formed therefrom has a PENT of at least 1500. Also disclosed is a method of preparing a tubular article including obtaining a bimodal polyethylene having a density of from 0.930 glee to 0.960 Wee and a molecular weight distribution of from 10 to 25, and processing the polyethylene under conditions where a specific energy input (SET) is less than 300 kW.h/ton, and wherein the article has a PENT of at least 1500. Further disclosed is a method for controlling the degradation of polyethylene including polymerizing ethylene monomer, recovering polyethylene, extruding the polyethylene, and controlling the degradation of polyethylene by measuring the SEI to the extruder and adjusting throughput and/or gear suction pressure keep SEI less than 300 kW.h/ton, and forming an article.
摘要翻译:公开了一种双峰型齐格勒 - 纳塔催化聚乙烯,其密度为0.930gle-0.960glee,分子量分布为10-25,其中由其形成的制品具有至少为1500的PENT。还公开了一种方法 制备管状制品,包括获得密度为0.930glee至0.960ee的分子量分布为10至25的双峰聚乙烯,并且在比能量输入(SET)小于300kW的条件下处理聚乙烯 h / ton,并且其中制品具有至少1500的PENT。还公开了一种控制聚乙烯降解的方法,包括聚合乙烯单体,回收聚乙烯,挤出聚乙烯,并通过测量SEI来控制聚乙烯的降解 到挤出机并调节产量和/或齿轮吸入压力使SEI小于300kW.h / ton,并形成物品。
摘要:
A polymer, and a process of producing the polymer, that comprises at least one olefin and has an ESCR of 100 hours to 500 hours, a density of 0.955 g/cc to 0.959 g/cc, and a flexural modulus of 140,000 psi to 220,000 psi. An article of manufacture that comprises the polymer.
摘要:
Disclosed is a bimodal Ziegler-Natta catalyzed polyethylene, having a density of from 0.930 g/cc to 0.960 g/cc, and a molecular weight distribution of from 10 to 25, wherein an article formed therefrom has a PENT of at least 1500. Also disclosed is a method of preparing a tubular article including obtaining a bimodal polyethylene having a density of from 0.930 g/cc to 0.960 g/cc and a molecular weight distribution of from 10 to 25, and processing the polyethylene under conditions where a specific energy input (SEI) is less than 300 kW.h/ton, and wherein the article has a PENT of at least 1500. Further disclosed is a method for controlling the degradation of polyethylene including polymerizing ethylene monomer, recovering polyethylene, extruding the polyethylene, and controlling the degradation of polyethylene by measuring the SEI to the extruder and adjusting throughput and/or gear suction pressure keep SEI less than 300 kW.h/ton, and forming an article.
摘要:
This invention relates polyethylene resins that are mixed with peroxides during extrusion to partially cross-link the polymer. The resins are then used to form an article and the article is then irradiated to cause further cross-linking of the polymer. Such resins are useful in blow molding applications, rotomolding, for foamed materials or articles, for extruded membranes, sheets and layers, and for applications where resins are wrapped around other materials or resins prior to irradiation. This cross-linking improves the properties of the resin for certain end-use applications. The polyethylene resins can be obtained from chromium catalyzed polymerizations, Ziegler-Natta catalyzed polymerizations, and metallocene polymerizations.