Abstract:
A system for cooling various components of an electronic display. One or more heat-generating components are preferably placed in thermal communication with a plate and ribs. One or more fans are placed to draw cooling air along the ribs to remove the heat removed from the component. Some embodiments may place the electronic image assembly in thermal communication with the ribs to remove heat from the electronic image assembly. Exemplary embodiments have power modules and the electronic image assembly in thermal communication with the ribs. Conductive thermal communication is established between the ribs and the components in the exemplary embodiments.
Abstract:
An electronic display which can be mounted above a paved surface in an outdoor environment. A surface or plate is placed behind the electronic display to define a gap where cooling air can be drawn through said gap in order to cool the electronic display. A plurality of ribs may be placed within the gap and in thermal communication with the electronic display. The density of the ribs may be varied according to the inlet and exhaust openings for the cooling air. The ribs may be placed at a higher density near the exhaust to account for the increase in temperature of the cooling air as it travels through the gap.
Abstract:
A method for cooling an electronic image assembly using ambient gas. Exemplary embodiments of the method include the steps of circulating a closed loop of circulating gas around the electronic image assembly, directing a flow of ambient air through a first manifold, allowing the flow of ambient air to cross the flow of circulating gas without allowing the two to mix, directing the flow of ambient air behind the electronic image assembly and directing the flow of ambient air through a second manifold. The circulating gas may be used to cool a front portion of the electronic image assembly. A cross through plate may be used to allow the ambient gas and circulating gas to cross paths without mixing. A heat exchanger may be included with some embodiments of the method.
Abstract:
A display unit and a vending machine having the same. The display unit includes a display panel to display an image, a circuit board to control the display panel, a board bracket installed at a rear of the display panel and formed with a receiving section to receive the circuit board, and a plurality of inlet holes and a plurality of outlet holes formed in opposite surfaces of the board bracket to allow external air to flow through the receiving section. The air travels through the inlet and outlet holes and passes through the receiving section in one direction to cool the display panel and the circuit board. Thus, the display unit is prevented from malfunctioning and the display panel is prevented from being degraded by heat even if tempered glass is installed at a front of the display panel.
Abstract:
A system for cooling an electronic image assembly using ambient gas. The system contains a plurality of channels place behind the electronic image assembly and preferably in conductive thermal communication with the image assembly. Ambient gas is ingested into the display housing and directed to a first manifold which distributes the ambient gas to the plurality of channels. A second manifold preferably collects the ambient gas from the channels after absorbing heat from the electronic image assembly and/or channels. The second manifold then preferably directs the ambient gas towards an exit aperture and out of the display housing. Circulating gas may also be used to cool a front portion of the electronic image assembly. A cross through plate may be used to allow the ambient gas and circulating gas to cross paths without mixing.
Abstract:
A system for cooling an electronic image assembly using ambient gas. The system contains a plurality of channels place behind the electronic image assembly and preferably in conductive thermal communication with the image assembly. Ambient gas is ingested into the display housing and directed to a first manifold which distributes the ambient gas to the plurality of channels. A second manifold preferably collects the ambient gas from the channels after absorbing heat from the electronic image assembly and/or channels. The second manifold then preferably directs the ambient gas towards an exhaust aperture and out of the display housing. Circulating gas may also be used to cool a front portion of the electronic image assembly. A cross through plate may be used to allow the ambient gas and circulating gas to cross paths without mixing.
Abstract:
Disclosed is a thermal plate assembly and method for cooling an electronic display. The thermal plate may contain a first portion which is in thermal communication with the electronic display. A second portion of the thermal plate may be in thermal communication with the housing. Apertures may be placed within the plate and a fan may be positioned to draw air through the apertures. A gap may be located between the electronic display and a transparent plate assembly, where the fan may be further positioned to force air through the gap as well.
Abstract:
A system and method for cooling an electronic image assembly having a plurality of cooling gas pathways place behind the electronic image assembly. A first fan may be used to force cooling gas through a first grouping of cooling gas pathways while a second fan may be used to force cooling gas through a second grouping of cooling gas pathways. Temperature sensing devices may be positioned so as to measure the temperature of the first and second groupings of cooling gas pathways. The speeds of the first and second fans may be adjusted based on the temperature measurements of the cooling gas pathway groupings. Additional fans with additional temperature sensing devices may be used for further accuracy and control over the temperature gradients of the electronic image assembly. Manifolds may be used to distribute/collect cooling gas to/from the cooling gas pathways.
Abstract:
A system and method for cooling an electronic image assembly having a plurality of channels place behind the electronic image assembly. A first fan may be used to force cooling gas through a first grouping of channels while a second fan may be used to force cooling gas through a second grouping of channels. Temperature sensing devices may be positioned so as to measure the temperature of the first and second groupings of channels. The speeds of the first and second fans may be adjusted based on the temperature measurements of the channel groupings. Additional fans with additional temperature sensing devices may be used for further accuracy and control over the temperature gradients of the electronic image assembly. Manifolds may be used to distribute/collect cooling gas to/from the channels.
Abstract:
Provided is an outdoor display apparatus having an improved configuration to effectively prevent deterioration of a panel included therein. The outdoor display apparatus includes: a casing body having an air inlet and an air outlet; first and second display panel modules in the casing body to display images on front and rear surfaces of the casing body, respectively; transparent members fitted respectively to the front surface and the rear surface of the casing body to protect the first and second display panel modules; an air suction unit to suction the air into the casing body through the inlet and to discharge the air through the outlet; and an air distribution unit to distribute the air discharged from the air suction unit to at least one of the first display panel module and the second display panel module.