Abstract:
A method for providing precoding weights for data symbols of data control subframes includes generating a downlink frame having control subframes which individually correspond to one of a plurality of downlink data subframes, and inserting weight information into each of the control subframes, such that the weight information is to be applied to data symbols present in the corresponding one of the data subframes. The method further includes transmitting the control subframes and the inserted weight information to a receiving device.
Abstract:
A method is presented of reporting control information in a wireless communication system in which M downlink time divisional duplex (TDD) subframes are associated with an uplink TDD subframe. A user equipment (UE), supporting at least one cell including a primary cell, receives a radio resource control (RRC) message indicating resource allocation information used for a first PUCCH format. The UE receives a first physical downlink shared channel (PDSCH) and a second PDSCH in one of the M downlink TDD subframes, wherein the second PDSCH is received with a downlink assignment index (DAI). The UE selects a physical uplink control channel (PUCCH) format among a plurality of PUCCH formats including the first PUCCH format and a second PUCCH format, and transmits a positive-acknowledgement (ACK)/negative-acknowledgement (NACK) signal for the first and second PDSCHs by using the selected PUCCH format.
Abstract:
A method and a user equipment for receiving a downlink signal, and a method and a base station for transmitting a downlink signal in a wireless communication system are discussed. The method of receiving a downlink signal according to an embodiment includes receiving downlink scheduling information. The downlink scheduling information includes a frequency block indicator and resource allocation information for one or more first transport blocks (TBs). The method further includes receiving the downlink signal including the one or more first TBs via a first frequency block among multiple frequency blocks. The first frequency block is indicated by the frequency block indicator among the multiple frequency blocks. Each of the multiple frequency blocks does not overlap with other multiple frequency blocks and a respective hybrid automatic repeat request (HARQ) process is provided per each of the one or more first TBs.
Abstract:
A method and a user equipment (UE) for transmitting control information in a wireless communication system are discussed. The method according to one embodiment includes receiving a parameter which indicates whether transmission of a hybrid automatic repeat request acknowledgement (HARQ-ACK) on a physical uplink control channel (PUCCH) and a sounding reference signal (SRS) in one subframe is configured; if the parameter is true, transmitting, in a primary component carrier (CC), the PUCCH, which coincides in a same subframe as the SRS, by using a shortened PUCCH format carrying at least one of the HARQ-ACK and a positive scheduling request (SR); and if the parameter is false, transmitting the PUCCH by using a normal PUCCH format, while not transmitting, in a secondary CC, the SRS which coincides in the same subframe as the PUCCH. The shortened PUCCH format is a shortened PUCCH format 1/1a/1b or a shortened PUCCH format 3.
Abstract:
An uplink transmission method and a user equipment in a wireless communication system are discussed. The method according to one embodiment includes generating uplink control information (UCI) which includes at least one of an automatic repeat request (HARQ) acknowledgement(ACK)/negative-acknowledgement (NACK) signal, a channel quality indicator (CQI) and a scheduling request (SR); transmitting the UCI on a physical uplink control channel (PUCCH); and transmitting a demodulation reference signal (DMRS) for the PUCCH. The DMRS is generated based on one or more values selected from among a set {0, 3, 6, 8, 10}.
Abstract:
According to one embodiment, a method for transmitting an uplink signal includes transmitting the uplink signal including a block of data symbols. The block of data symbols are mapped to at least two sets of subcarrier blocks. Each data symbol of the block of data symbols is mapped to one of subcarriers of the at least two sets of subcarrier blocks. The at least two sets of subcarrier blocks are not contiguous in frequency. The block of data symbols are mapped in sequence starting with a first data symbol to the at least two sets of subcarrier blocks and in increasing order of subcarrier index.
Abstract:
A method is provided for controlling transmission powers by a communication apparatus in a wireless communication system supporting a plurality of component carriers. When a sounding reference symbol (SRS) transmission overlaps with a physical uplink control channel (PUCCH) transmission in a time domain, the communication apparatus checks as to whether a total of a PUCCH transmission power for the PUCCH transmission on a first component carrier and a SRS transmission power for the SRS transmission on a second component carrier exceeds a maximum transmission power configured for the communication apparatus. The SRS transmission is dropped by the communication apparatus if the total of the PUCCH transmission power and the SRS transmission power exceeds the maximum transmission power configured for the communication apparatus.
Abstract:
A method for a base station (BS) to perform a hybrid automatic repeat request (HARQ). The BS transmits an uplink (UL) grant for a first subframe of a second serving cell through a first serving cell. The BS receives UL data based on the UL grant in the first subframe, transmits an acknowledgement/non-acknowledgement (ACK/NACK) for the UL data through a physical HARQ indicator channel (PHICH) in subframe i of the first serving cell and receives non-adaptively retransmitted UL data in a second subframe of the second serving cell if a NACK for the UL data has been transmitted through the PHICH in the subframe i of the first serving cell. The first serving cell and the second serving cell use different UL-DL configurations.
Abstract:
A method and a user equipment (UE) for receiving a power headroom report in a wireless access system that supports a carrier aggregation are discussed. The method according to an embodiment includes transmitting by an eNB to a UE an uplink transmission grant allocating uplink resources on a predetermined subframe in an anchor uplink component carrier (UL CC); and receiving the power headroom report by the eNB from the UE. The power headroom report includes a power headroom value for the anchor UL CC, when the eNB has configured the UE for a simultaneous physical uplink control channel (PUCCH) and physical uplink shared channel (PUSCH) transmission. The method further includes reporting the power headroom value to a base station. The power headroom value is calculated.
Abstract:
A packet data transmitting method and mobile communication system using the same enables transmission of common ACK/NACK information from each sector of a base station to a user entity in softer handover. The method includes receiving via at least one of the plurality of sectors a data packet from the mobile terminal, the data packet being correspondingly received for each of the at least one of the plurality of sectors; combining the correspondingly received data packets, to obtain a signal having a highest signal-to-noise ratio; decoding the value obtained by the combining; determining a transmission status of the data packet according to the decoding; and transmitting to the mobile terminal a common ACK/NACK signal including one of a common ACK signal and a common NACK signal according to the determining, the common ACK/NACK signal being transmitted via each of the at least one sector.