Abstract:
An electronic device may have control circuitry that uses a reflectometer to measure antenna impedance during operation. The reflectometer may have a directional coupler that is coupled between radio-frequency transceiver circuitry and an antenna. A calibration circuit may be coupled between the directional coupler and the antenna. The calibration circuit may have a first port coupled to the antenna, a second port coupled to the directional coupler, and a third port that is coupled to a calibration resistance. The reflectometer may have terminations of identical impedance that are coupled to ground. Switching circuitry in the reflectometer may be used to route signals from the directional coupler to a feedback receiver for measurement by the control circuitry or to ground through the terminations. Calibrated antenna reflection coefficient measurements may be used in dynamically adjusting the antenna.
Abstract:
An electronic device may be provided with wireless circuitry. Control circuitry may be used to adjust the wireless circuitry. The wireless circuitry may include an antenna that is tuned using tunable components. The control circuitry may gather information on the current operating mode of the. electronic device, sensor data from a proximity sensor, accelerometer, microphone, and other sensors, antenna impedance information for the antenna, and information on the use of connectors in the electronic device. Based on this gathered data, the control circuitry can adjust the tunable components to compensate for antenna detuning due to loading from nearby external objects, may adjust transmit power levels, and may make other wireless circuit adjustments.
Abstract:
An electronic device may include an adjustable power supply, at least one antenna, and associated antenna tuning circuitry. The antenna tuning circuitry may be an integral part of the antenna and may include a control circuit and at least one tunable element. The tunable element may include radio-frequency switches, continuously/semi-continuously adjustable components such as tunable resistors, inductors, and capacitors, and other load circuits that provide desired impedance characteristics. The power supply may provide power supply voltage signals to the antenna tuning circuitry via inductive coupling. The power supply voltage signals may be modulated according to a predetermined lookup table during device startup so that the control circuit is configured to generate desired control signals. These control signals adjust the tunable element so that the antenna can support wireless operation in desired frequency bands.
Abstract:
Radio frequency test systems for characterizing antenna performance in various radio coexistence scenarios are provided. In one suitable arrangement, a test system may be used to perform passive radio coexistence characterization. During passive radio coexistence characterization, at least one signal generator may be used to feed aggressor signals directly to antennas within an electronic device under test (DUT). The aggressor signals may generate undesired interference signals in a victim frequency band, which can then be received and analyzed using a spectrum analyzer. During active radio coexistence characterization, at least one radio communications emulator may be used to communicate with a DUT via a first test antenna. While the DUT is communicating with the at least one radio communications emulator, test signals may also be conveyed between DUT 10 and a second test antenna. Test signals conveyed through the second test antenna may be used in obtaining signal interference level measurements.
Abstract:
Electronic devices may be provided that include radio-frequency transceiver circuitry and antennas. An antenna may be formed from an antenna resonating element and an antenna ground. The antenna resonating element may have a shorter portion that resonates at higher communications band frequencies and a longer portion that resonates at lower communications band frequencies. The resonating element may be formed from a peripheral conductive electronic device housing structure that is separated from the antenna ground by an opening. A parasitic monopole antenna resonating element or parasitic loop antenna resonating element may be located in the opening. Antenna tuning in the higher communications band may be implemented using an adjustable inductor in the parasitic element. Antenna tuning in the lower communications band may be implemented using an adjustable inductor that couples the antenna resonating element to the antenna ground.
Abstract:
Electronic devices may include radio-frequency transceiver circuitry and antenna structures. The antenna structures may include an inverted-F antenna resonating element and an antenna ground that form an inverted-F antenna having first and second antenna ports. The antenna structures may include a slot antenna resonating element. The slot antenna resonating element may serve as a parasitic antenna resonating element for the inverted-F antenna at frequencies in a first communications band and may serve as a slot antenna at frequencies in a second communications band. The slot antenna may be directly fed using a third antenna port. An adjustable capacitor may be coupled to the first port to tune the inverted-F antenna. The inverted-F antenna may also be tuned using an adjustable capacitor bridging the slot antenna resonating element.
Abstract:
Electronic devices may be provided that contain wireless communications circuitry. The wireless communications circuitry may include radio-frequency transceiver circuitry and antenna structures. The antenna structures may form a dual arm inverted-F antenna. The antenna may have a resonating element formed from portions of a peripheral conductive electronic device housing member and may have an antenna ground that is separated from the antenna resonating element by a gap. A short circuit path may bridge the gap. An antenna feed may be coupled across the gap in parallel with the short circuit path. Low band tuning may be provided using an adjustable inductor that bridges the gap. The antenna may have a slot-based parasitic antenna resonating element with a slot formed between portions of the peripheral conductive electronic device housing member and the antenna ground. An adjustable capacitor may bridge the slot to provide high band tuning.
Abstract:
Antenna structures for an antenna may be formed from a dielectric carrier with metal structures. The metal structures may be patterned to cover all sides of the dielectric carrier. The dielectric carrier may have a shape with six sides or other shape that creates a three-dimensional layout for the antenna structures. The antenna structures may have a tunable circuit that allows the antenna to be tuned. The tunable circuit may have first and second terminals coupled to one of the sides of the carrier. The metal structures may be configured to form an inverted-F antenna resonating element. Portions of the metal structures may form a first arm for an inverted-F antenna and portions of the metal structures may form a second arm for the inverted-F antenna. The antenna may operate in multiple communications bands. The tunable circuit may tune one band without significantly tuning other bands.