Abstract:
Methods and systems for variable polarization wafer inspection are provided. One system includes one or more polarizing components position in one or more paths of light scattered from a wafer and detected by one or more channels of an inspection system. The polarizing component(s) are configured to have detection polarization(s) that are selected from two or more polarization settings for the polarizing component(s).
Abstract:
Methods and systems for detecting defects on a wafer are provided. One method includes determining characteristics of care areas for a wafer based on wafer patterns. Determining the characteristics includes determining locations of care areas, identifying at least one pattern of interest (POI) in the wafer patterns for each of the care areas, allowing any of the care areas to have a free-form shape, allowing the care areas to be larger than frame images and selecting two or more POIs for at least one of the care areas. The method also includes searching for POIs in images generated for the wafer using an inspection system. In addition, the method includes detecting defects on the wafer by determining positions of the care areas in the images and applying one or more defect detection methods to the images based on the positions of the care areas in the images.
Abstract:
Methods and systems for adaptive sampling for semiconductor inspection recipe creation, defect review, and metrology are provided. The embodiments provide image processing and pattern recognition algorithms and an adaptive sampling method for extracting critical areas from SEM image patches for use in a wafer inspection system when design data for a semiconductor chip is not available. The embodiments also provide image processing and pattern recognition algorithms for efficiently discovering critical defects and significant deviations in the normal manufacturing process, using the output from a wafer inspection system and an adaptive sampling method to select wafer locations to be examined on a high resolution review or metrology tool.
Abstract:
Illumination subsystems of a metrology system, metrology systems, and methods for illuminating a specimen for metrology measurements are provided. One illumination subsystem includes a light source configured to generate coherent pulses of light and a dispersive element positioned in the path of the coherent pulses of light, which is configured to reduce coherence of the pulses of light by mixing spatial and temporal characteristics of light distribution in the pulses of light. The illumination subsystem also includes an electro-optic modulator positioned in the path of the pulses of light exiting the dispersive element and which is configured to reduce the coherence of the pulses of light by temporally modulating the light distribution in the pulses of light. The illumination subsystem is configured to direct the pulses of light from the electro-optic modulator to a specimen positioned in the metrology system.
Abstract:
Methods and systems for detecting defects on a wafer are provided. One method includes identifying one or more characteristics of first raw output generated for a wafer that correspond to one or more geometrical characteristics of patterned features formed on the wafer and assigning individual output in second raw output generated for the wafer to different segments based on the identified one or more characteristics of the first raw output and based on the individual output in the second raw output and individual output in the first raw output that were generated at substantially the same locations on the wafer such that the one or more geometrical characteristics of the patterned features that correspond to each of the different segments in the second raw output are different.
Abstract:
Systems and methods for determining information for a wafer are provided. One system includes a first grating that diffracts light from a wafer having wavelengths in a first portion of a broadband range and does not diffract the light from the wafer having wavelengths in a second portion of the broadband range. The system also includes a second grating positioned in the path of the light that is not diffracted by the first grating. The second grating diffracts the light from the wafer having the wavelengths in the second portion of the broadband range. The system further includes a first detector configured to generate first output responsive to the light diffracted by the first grating and a second detector configured to generate second output responsive to the light diffracted by the second grating.
Abstract:
Methods for generating a standard reference die for use in a die to standard reference die inspection and methods for inspecting a wafer are provided. One computer-implemented method for generating a standard reference die for use in a die to standard reference die inspection includes acquiring output of an inspection system for a centrally located die on a wafer and one or more dies located on the wafer. The method also includes combining the output for the centrally located die and the one or more dies based on within die positions of the output. In addition, the method includes generating the standard reference die based on results of the combining step.
Abstract:
Computer-implemented methods, computer-readable media, and systems for identifying one or more optical modes of an inspection system as candidates for use in inspection of a layer of a wafer are provided. One method includes determining one or more characteristics of images of the layer of the wafer acquired using the inspection system and different optical modes available on the inspection system. The method also includes identifying a first portion of the different optical modes as not candidates for use in the inspection of the layer of the wafer based on the one or more characteristics of the images. In addition, the method includes generating output by eliminating the first portion of the different optical modes from the different optical modes at which the images were acquired such that the output includes a second portion of the different optical modes indicated as the candidates for use in the inspection.
Abstract:
Methods and systems for detecting defects on a reticle are provided. One method includes printing a single die reticle in first areas of a wafer using different values of a parameter of a lithography process and at least one second area using a nominal value of the parameter. The method also includes acquiring first images of the first areas and second image(s) of the at least one second area. In addition, the method includes separately comparing the first images acquired for different first areas to at least one of the second image(s). The method further includes detecting defects on the reticle based on first portions of the first images in which variations in the first images compared to the at least one second image are greater than second portions of the first images and the first portions that are common to two or more of the first images.
Abstract:
Systems and methods for determining two or more characteristics of a wafer are provided. The two or more characteristics include a characteristic of the wafer that is spatially localized in at least one dimension and a characteristic of the wafer that is not spatially localized in two dimensions.