Abstract:
Random access techniques may use subcarriers allocated for random access requests in narrowband communication. Physical resources may be selected for transmission of a random access request based on a “coverage class” of a user equipment (UE). In some examples, a set of coverage classes may be identified based on one or more UE channel conditions, such as pathloss. Each coverage class may have one or more associated subcarriers of a set of subcarriers in a narrowband bandwidth, and random access messages may be transmitted using the associated subcarrier(s) for the coverage class of a UE. In some examples, different coverage classes may have different numbers of redundant transmissions of a random access message, which may be based on channel conditions associated with a particular coverage class. A UE, based on a measured channel condition, may determine a coverage class and select a subcarrier based on the determined coverage class.
Abstract:
Periodic over-the-air channel state information (CSI) reporting to serving cells and one or more non-serving cells via a control channel multi-point attachment is disclosed. The channel state information report may be transmitted based on information indicating how to transmit the channel state information report to the non-serving cell. The information indicating how to transmit the channel state information report may be provided by the serving eNodeB. The information may include a periodicity, offset parameters, timing advance commands, power control commands, and/or an aperiodic report request.
Abstract:
Reference signals may not uniformly span over time and/or frequency on a resource unit. For example, reference signals may non-uniformly occupy symbols of a subframe. Alternatively, reference signals normally transmitted over certain tones of a subframe may have to be punctured to avoid collisions with a PSS and/or SSS transmitted over the same tones. Consequently, a UE may only be able to use a subset of reference signal tones for performing channel estimation. Accordingly, a method, an apparatus, and a computer program product for wireless communication are provided for improving channel estimation under a non-uniform signal pattern. The apparatus indicates to a UE to utilize a subset of reference signals to derive a channel estimate for demodulating data in a specific subframe, and transmits a plurality of subframes, the plurality of subframes including the reference signals and the specific subframe, the specific subframe including a PSS and/or SSS.
Abstract:
Enhanced power headroom reporting (ePHR) for MTC devices. The ePHR techniques may include configuration and triggering of reporting when a corresponding change to a coverage enhancement (CE) level is likely to result. For example, ePHR may be based on parameters more directly related to PH change instead of PL changes. MTC devices may be configured with multiple thresholds for ePHR reporting that define ePHR regions associated with CE levels. In some examples, an ePHR triggered at the MAC level is used to trigger sending a request for uplink data resources. Legacy PH reporting may be disabled when ePHR is configured to reduce overhead.
Abstract:
Certain aspects of the present disclosure relate to methods and apparatus for managing control and data transmissions for low cost UEs. In certain aspects, multiplexing of a control channel and data channel may be allowed in a Physical Resource Block (PRB) pair of a subframe. An indication may be provided to the UE regarding whether a portion of resources of the PRB pair not used to transmit the control channel is available for transmitting the data channel. In alternative aspects, control and data may be scheduled in different subframes, such that there is no need to multiplex them in a subframe or a PRB pair in a same subframe.
Abstract:
Methods, systems, and devices for wireless communication are described. User equipment (UE) and base stations may support frequency hopping with fast retuning for enhanced machine type communication (eMTC). For example, a UE may need to retune portions of its receive or transmit chain to support operation on various frequency bands, and it may perform the retune within a few symbols. Both base station and UE may anticipate or account for the retuning delay and communicate accordingly. A base station may refrain from transmitting for a certain period of time, for example. A base station may also account for frequency hopping delays for uplink communications. Systems may employ other techniques to support eMTC. For example, UEs may leverage reference signal patterns in certain control channels for demodulation. In some cases, base stations may alter control channel transmissions to account for various types of UEs with in the system.
Abstract:
A wireless device may determine a coverage enhancement (CE) level (or coverage extension) by attempting to decode a received broadcast signal. The wireless device may attempt to decode a portion of the broadcast signal using a CE level that is less than the CE level of the broadcast. If the decoding attempt is successfully, the CE level may be declared as an operating CE level. If decoding is unsuccessful, the CE level may be increased decoding retried. The wireless device may continue to test-decode the broadcast signal at new (e.g., increasing) CE levels until a CE level is sufficient for a decode and is declared the operating CE level of the wireless device. In some cases, the wireless device test-decodes a broadcast channel after selecting a CE level based on a path loss measurement of a downlink signal (e.g., reference signal).
Abstract:
Methods, systems, apparatuses, and devices are described for wireless communication. In one example, a sequence may be determined based on at least one of: an operator identifier associated with an operator using a spectrum or a clear channel assessment (CCA) slot index associated with the operator using the spectrum. At least one channel based on the determined sequence may be used to communicate over the spectrum.
Abstract:
Various aspects described herein relate to receiving data at a user equipment (UE) in wireless communications. The UE monitors a control channel associated with first data resources of a first transmission time interval (TTI). Based on the monitoring, the UE can determine that the control channel schedules second data resources for the UE based on a second TTI. Accordingly, in response to such determination, the UE can process data received over the second data resources based on the second TTI, where a first duration of the first TTI is greater than a second duration of the second TTI.
Abstract:
Methods, systems, and devices are described for facilitating Machine Type Communication in a wireless communications system. Link budget-limited MTC devices, may be supported. An MTC physical broadcast channel may be utilized for the Machine Type Communication. The MTC physical broadcast channel may be transmitted over one or more subframes different from a regular physical broadcast channel. The payload for the MTC physical broadcast channel may be reduced. The MTC physical broadcast channel may also be utilized to indicate the presence of paging and/or to indicate a change in system information. Some embodiments utilize one or more MTC-specific system information blocks. The MTC-specific system information blocks may combine and/or simplify multiple system information blocks. The location of the MTC system information blocks may be predetermined or information about their location may be transmitted over the MTC physical broadcast channel. An enhanced paging channel may be used to indicate system information updates.