Abstract:
Aspects of the present disclosure provide methods and apparatuses that use various connection reconfiguration signaling schemes to enable fast user equipment reconfiguration in wireless networks. A network can reduce reconfiguration signaling traffic or overhead by reducing the amount of configuration data sent to each user equipment (UE) in a reconfiguration message. In some examples, when a UE first enters a network area, the network may provide the UE with a list of commonly used baseline configurations. Each baseline configuration may be identified by an index and a value tag. Subsequently, the network may transmit a reconfiguration message including, for example, only the index and value tag to indicate the desired configuration.
Abstract:
Certain aspects of the present disclosure relate to methods and apparatus for generating and communicating transport blocks. Certain aspects provide a method for allocating an ordered set of packets to a plurality of layers across a plurality of time resources. The method includes allocating one or more packets of the ordered set of packets in order across each of the plurality of layers prior to allocating packets of the ordered set of packets to each of the time resources of any one of the plurality of layers. The method further includes transmitting the plurality of layers.
Abstract:
Methods, systems, and devices are described for enhanced power savings in wireless devices through mobile initiated dormancy procedure. A user equipment (UE) may establish radio resource control (RRC) connectivity with a base station of the network, and transmit and receive one or more distinct signaling messages for dormancy state initialization and suspension at the UE. Dormancy state implementation at the UE may conserve available power resources at the UE during periods of inactive data transaction. The one or more signaling messages may contain a single or multi-bit indication for the receiving device, and may be transmitted via direct signaling on upper layer protocols of the data network or mapped to allocated resources of a data transmission. The signaling messages may sustain synchronization between the interpreted functional mode of the UE at the base station and the implemented mode at the UE.
Abstract:
Aspects of the present disclosure relate to methods and apparatus for optimizing real time services (e.g., such as a voice over Long Term Evolution (LTE) (VoLTE)) for devices with limited communications resources, such as machine type communication (MTC) devices and enhanced MTC (eMTC) devices. In one aspect, a UE determines a first configuration of subframes within at least one radio frame available for the UE and other UEs to use for bundled communications with a BS. The UE receives an indication of one or more subframes within the at least one radio frame that are unavailable for bundled uplink transmissions, and determines a second configuration of subframes to use for bundled communications based on the indication. The UE overrides the first configuration of subframes with the second configuration of subframes, and communicates with the BS using the second configuration of subframes. Numerous other aspects are provided.
Abstract:
Methods, systems, and devices for wireless communication are described. A user equipment (UE) may transmit a power headroom report (PHR) to a first base station on a first link of a split bearer and to a second base station on a second link of the split bearer. The UE may evaluate a characteristic associated with the first link or the second link after transmitting the first PHR, and adjust a transmit power value transmitted in the PHR associated with the first link or the second link, or both based on the evaluation. As a result, the UE may transmit an adjusted PHR to the first base station or the second base station, or both.
Abstract:
The disclosure provides for selectively utilizing an inactive mode for saving power during wireless communications. A user equipment (UE) may transmit a first data packet for a first bearer using a Hybrid Automatic Repeat request (HARQ) process to a base station on a first channel. The UE may receive at least two acknowledgments, for the HARQ process on a second channel different than the first channel indicating that the first data packet was successfully received by the base station. The UE may determine whether a second data packet is communicated for the first bearer or a second bearer. The UE may also determine, based at least in part on the determination of whether the second data packet is communicated, whether to enter into an inactive mode in which at least the second channel is not decoded.
Abstract:
A method of wireless communication is disclosed, in which a wearable device may determine whether a network operator provides support for bursty communication, and communicate directly through the network operator in the bursty communication in response to the determining the network operator provides the support for bursty communication. The support for bursty communication by the network operator may be either integrated into a telephony application server (TAS) or a wearable application server (WAS) that is a separate entity from the TAS and deployed between the TAS and the wearable device. The bursty communication by the wearable device may include receiving packets in the bursty communication, buffering the received packets, and transmitting or playing out the bursty communication in entirety after all of the packets in the bursty communication have been received. Apparatus corresponding to such method is also disclosed.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. A first user equipment (UE) may determine that the first UE is to transfer a call from the first UE to a second UE, wherein the first UE and the second UE share a mobile device number (MDN). The first UE may initiate a call transfer procedure to transfer the call from the first UE to the second UE while the call is in an active state.
Abstract:
Certain aspects of the present disclosure relate to methods and apparatus for adaptive antenna switching for measurements, for example, in high gain automotive devices. According to certain aspects, a method is provided herein for wireless communications. The method generally includes selecting, based on one or more conditions, a first measurement configuration that uses at least an external antenna mounted on a surface of a vehicle for one or more measurements or a second measurement configuration that uses at least an internal antenna associated with the vehicle for the one or more measurements; performing the one or more measurements using the selected measurement configuration; and sending a report based on the one or more measurements. The techniques for measurement configuration selection may allow the device to achieve the benefits of both the high gain external antenna and the lower gain internal antenna(s) depending on the current conditions.
Abstract:
A method, apparatus, and computer program product for wireless communication are provided. The method generally includes registering a UE with an internet protocol multimedia subsystem (IMS) server for one or more native services and non-native services, wherein the UE comprises a modem processor and an application processor. The IMS server may comprise an RTP stack, wherein a portion of the RTP stack resides on the MP and a portion on the AP. A data packet may be received having an identifier of one of the native or non-native services. The data packet may be received from a WWAN or IWLAN. The data packet may be forwarded to the MP or to the AP based on the identifier. According to aspects, the data packet is forwarded to the MP if the identifier indicates an audio service and to the AP if the data packet indicates a video service.