Abstract:
In an illustrative embodiment of the present invention, a channel is allocated to carry messages from each of multiple subscriber units to a base station. Selected messages generated by a subscriber unit that would otherwise be transmitted over an assigned reverse link traffic channel are instead encoded and transmitted to the base station over a shared reverse link channel. Preferably, the shared reverse link channel is time-slotted and each subscriber unit transmits information to the base station in an assigned time slot so that the base station receiving the messages can identify from which subscriber unit a message is sent. Certain bits in a time slot of the shared channel as set by a subscriber unit can be used to communicate a particular message to the base station. For instance, a single bit that is transmitted in a time slot can be encoded to transmit a substitute message from one of the multiple subscriber units to a base station, where the setting of the bit itself indicates a message type.
Abstract:
In a wireless telecommunications network, wireless transmissions are carried via an RF medium between users and a central wireless transceiver, or base station processor. A subscriber access unit connected to a user device such as a user PC is employed to transmit wireless messages to and from the base station processor. Multiple, simultaneous wireless transmissions to the base station from different subscriber access units can have a tendency to interfere with each other. Subscriber access units employing an omnidirectional antenna or which are highly mobile will tend to experience more interference than stationary users or subscriber access units employing a directional antenna. The allocation of wireless transmission resources to retransmit wireless messages over a lossy link can have a detrimental effect on wireless resources available for other users. A system which allows a subscriber access unit to register device capabilities with a base station processor to determine the degree to which a particular subscriber access unit may be prone to interference provides computation and adjustment of transmission constraints for each subscriber access unit accordingly to maximize throughput.
Abstract:
An antenna apparatus that can increase capacity in a wireless communication system is disclosed. The antenna operates in conjunction with a station and comprises a plurality of antenna elements, each coupled to a respective weight control component to provide a weight to the signal transmitted from (or received by) each element. The weight for each antenna element is adjusted to achieve optimum reception during, for example, an idle mode when a pilot signal is received. The antenna array creates a beam former for signals to be transmitted from the mobile station, and a directional receiving array to more optimally detect and receive signals transmitted from the base station. By directionally receiving and transmitting signals, multipath fading and intercell interference are greatly reduced. The weights are adjusted in a coarse and a fine mode. In the coarse mode all the weight control components are jointly adjusted or changed so that the antenna beam scans through a predetermined sector of a circle until a signal quality metric of the received signal is optimized. The coarse adjustment mode is followed by a fine adjustment mode during which the weights of are independently adjusted to further optimize the signal quality metric.
Abstract:
A single, common correlation filter (CF) core is provided in a wireless system using CDMA. A plurality of channels with different data rates are provided in the wireless system. The channels provided in the wireless system include the access channel, the maintenance channel, and the traffic channel in which information (e.g., pilot or data symbols or both) is transmitted at the tier 1, tier 2 and tier 3 rates. The data rate for transmitting the information is programmable by digital signal processor (DSP). A user-unique code, such as a PN code, is applied to the information being transmitted in the channels of the wireless system. The information is QPSK modulated and transmitted in any one of the channels at any data rate. The transmitted information is correlated at the smallest data rate (i.e., the tier 1 rate) in the correlation filter (CF) of the wireless system by time multiplexing delayed versions of the PN code to the correlation filter core. The correlated information is then demultiplexed and pilot aided QPSK demodulated. The demodulated information is summed at the proper integer multiple of the tier 1 rate to achieve the tier 2 and tier 3 rates. The three strongest multipaths (in terms of the received power) are selected in a window or time period for optimal information recovery. Furthermore, three outputs from the demodulated information can be provided and combined for temporal diversity. Spatial diversity is achieved by providing a plurality of antennas at each receiver and a single, common correlation filter at each of the plurality of antennas of the receivers in the wireless system.
Abstract:
A directive antenna having plural antenna elements is arranged in a parasitic antenna array. Frequency selective components are connected to a first subset of the antenna elements. Weighting structures are connected to a second subset of the antenna elements. The first and second subsets of antenna elements may be connected by a space-fed power distribution system to produce independently steerable beams having spectrally separated signals.
Abstract:
A service option overlay for a CDMA wireless communication in which multiple allocatable subchannels are defined on a reverse link by assigning different code phases of a give long pseudonoise (PN) code to each subchannel. The instantaneous bandwidth needs of each on-line subscriber unit are then met by dynamically allocating none, one, or multiple subchannels on an as needed basis for each network layer connection. The system efficiently provides a relatively large number of virtual physically connections between the subscriber unites and the base stations on the reverse link for extended idle periods such as when computers connected to the subscriber unites are powered on, but not presently actively sending or receiving data. These maintenance subchannels permit the base station and the subscriber units to remain in phase and time synchronization. This in turn allows fast acquisition of additional subchannels as needed by allocating new code phase subchannels. Preferably, the code phases of the new channels are assigned according to a predetermined code phase relationship with respect to the code phase of the corresponding maintenance subchannel.
Abstract:
A subscriber controlled registration protocol, a subscriber monitors a congestion indicator signal broadcasted by a base station with which it desires to register. If the congestion indicator signal indicates that the base station is operating in a congested state, the mobile station selects another base station in the system. Otherwise, it attempts to register with the first selected base station.
Abstract:
A system for wireless data transmission that uses a channel bandwidth, channel separation, and radio frequency power spectrum which is compatible with existing deployments of wireless voice services. The transmitted waveforms are thus compatible with existing cellular networks. However, the time domain digital coding, modulation, and power control schemes are optimized for data transmission. Existing cellular network sites can thus be used to provide a high speed service optimized for wireless data traffic without the need for new radio frequency planning, and without interfering with existing voice service deployments.
Abstract:
A technique for providing high speed data service over standard wireless connections via an unique integration of protocols and existing cellular signaling, such as is available with Code Division Multiple Access (CDMA) type systems through more efficient allocation of access to CDMA channels. For example, when more users exist than channels, the invention determines a set of probabilities for which users will require channel access at which times, and dynamically assigns channel resources accordingly. Channel resources are allocated according to a buffer monitoring scheme provided on forward and reverse links between a base station and multiple subscriber units. Each buffer is monitored over time for threshold levels of data to be transmitted in that buffer. For each buffer, a probability is calculated that indicates how often the specific buffer will need to transmit data and how much data will be transmitted. This probability takes into account the arrival rates of data into the buffer, as well as which thresholds within the buffer are exceeded, as well as which resources in the form of channels are already allocated to the subscriber unit.
Abstract:
In an interference mitigation method, subscribers that will receive a high power transmission generate an alert message to surrounding base stations. A surrounding base station, before it generates new transmissions, determines the distance between it and a second subscriber that will receive the new transmission. If the distance is greater than an interference threshold, the base station delays the new transmission until the first high-power transmission concludes. The method prevents two high-power transmissions from occurring simultaneously.