Abstract:
Systems, methods, and computer-readable media for managing compromised sensors in multi-tiered virtualized environments. In some embodiments, a system can receive, from a first capturing agent deployed in a virtualization layer of a first device, data reports generated based on traffic captured by the first capturing agent. The system can also receive, from a second capturing agent deployed in a hardware layer of a second device, data reports generated based on traffic captured by the second capturing agent. Based on the data reports, the system can determine characteristics of the traffic captured by the first capturing agent and the second capturing agent. The system can then compare the characteristics to determine a multi-layer difference in traffic characteristics. Based on the multi-layer difference in traffic characteristics, the system can determine that the first capturing agent or the second capturing agent is in a faulty state.
Abstract:
In one embodiment, a method includes receiving network data at an analytics device, identifying features for the network data at the analytics device, grouping each of the features into bins of varying width at the analytics device, the bins comprising bin boundaries selected based on a probability that data within each of the bins follows a discrete uniform distribution, and utilizing the binned features for anomaly detection. An apparatus and logic are also disclosed herein.
Abstract:
An example method can include choosing a pattern or patterns of network traffic. This pattern can be representative of a certain type of traffic such as an attack. The pattern can be associated with various components of a network and can describe expected behavior of these various components. A system performing this method can then choose a nodes or nodes to generate traffic according to the pattern and send an instruction accordingly. After this synthetic traffic is generated, the system can compare the behavior of the components with the expected behavior. An alert can then be created to notify an administrator or otherwise remedy any problems.
Abstract:
An example method can include receiving a traffic report from a sensor and using the traffic report to detect intra-datacenter flows. These intra-datacenter flows can then be compared with a description of historical flows. The description of historical flows can identify characteristics of normal and malicious flows. Based on the comparison, the flows can be classified and tagged as normal, malicious, or anomalous. If the flows are tagged as malicious or anomalous, corrective action can be taken with respect to the flows. A description of the flows can then be added to the description of historical flows.
Abstract:
Systems, methods, and computer-readable media are provided for determining a packet's round trip time (RTT) in a network. A system can receive information of a packet sent by a component of the network and further determine an expected acknowledgement (ACK) sequence number associated with the packet based upon received information of the packet. The system can receive information of a subsequent packet received by the component and determine an ACK sequence number and a receiving time of the subsequent packet. In response to determining that the ACK sequence number of the subsequent TCP packet matches the expected ACK sequence number, the system can determine a round trip time (RTT) of the packet based upon the received information of the packet and the received information of the subsequent packet.
Abstract:
Managing a network environment to identify spoofed packets is disclosed. A method includes analyzing, via a first capture agent, packets processed by a first environment in a network associated with a first host, and analyzing, via a second capture agent, packets processed by a second environment in the network associated with a second host. The method includes collecting the first data and the second data at a collector and generating a topological map of the network and a history of network activity associated with the first environment and the second environment. The method includes extracting network data from a packet and comparing the extracted network data with stored network data in the database. When the comparison indicates that the extracted network data does not match the stored network data (i.e., the reported source does not match an expected source for the packet), determining that the packet is a spoofed packet.
Abstract:
Systems, methods, and computer-readable media for collector high availability. In some embodiments, a system receives, from a first collector device, a first data report generated by a capturing agent deployed on a host system in a network. The system can also receive, from a second collector device, a second data report generated by the capturing agent deployed on the host system. The first and second data reports can include traffic data captured at the host system by the capturing agent during a period of time. The system can determine that the first data report and the second data report are both associated with the capturing agent, and identify duplicate data contained in the first data report and the second data report. The system can then deduplicate the first and second data reports to yield a deduplicated data report.
Abstract:
In one embodiment, a method includes receiving at an analytics module operating at a network device, network traffic data collected from a plurality of sensors distributed throughout a network and installed in network components to obtain the network traffic data from packets transmitted to and from the network components and monitor network flows within the network from multiple perspectives in the network, processing the network traffic data at the analytics module, the network traffic data comprising process information, user information, and host information, and identifying at the analytics module, anomalies within the network traffic data based on dynamic modeling of network behavior. An apparatus and logic are also disclosed herein.
Abstract:
Application dependency mapping (ADM) can be automated in a network. The network can determine whether certain nodes form a cluster of a tier of an application. The network can monitor network data and process data for traffic passing through the network using a sensor network that provides multiple perspectives for the traffic. The network can analyze the network data and process data to determine respective feature vectors for nodes. A feature vector may represent a combination of the features corresponding to the network data and the features corresponding to the process data of a node. The network can compare the similarity of the respective feature vectors and determine each node's cluster based on similarity measures between nodes.
Abstract:
Systems, methods, and non-transitory computer-readable storage media for translating source addresses in an overlay network. An access switch in an overlay network, such as a VXLAN, may receive an encapsulated packet from a tunnel endpoint in the overlay network. The encapsulated packet may originate from a host associated with the tunnel endpoint and be encapsulated at the tunnel endpoint with a first source tunnel endpoint address and a destination tunnel endpoint address. The access switch may replace the first source tunnel endpoint address in the encapsulated packet with a second source tunnel endpoint address of the access switch to yield a translated packet. The access switch may then transmit the translated packet towards the destination tunnel endpoint address.