Abstract:
According to one embodiment, a method for a wireless local area includes: generating a medium access control (MAC) protocol data unit (MPDU) to be transmitted to a target station; generating a physical layer convergence procedure (PLCP) protocol data unit (PPDU) by attaching a PLCP preamble to the MPDU; selecting a transmission channel; and transmitting the PPDU to the target station over the transmission channel. Selecting the transmission channel includes: performing clear channel assessment (CCA) on a first channel to determine whether the first channel is idle; and only after it is determined that the first channel is idle, selecting the first channel and at least one idle second channel as the transmission channel. The PLCP preamble includes channel allocation information indicating a bandwidth of the transmission channel.
Abstract:
A method for transmitting and receiving uplink signals using an optimized rank 3 codebook is disclosed. The optimized rank 3 codebook includes 6 precoding matrix groups, each of which has 1 variable having an amplitude of 1. Preferably, the optimized 4Tx rank 3 codebook has 12 precoding matrix, two precoding matrixes are selected from each the above 6 precoding matrix groups considering chordal distance and the number of precoding matrix.
Abstract:
A method of transmitting a Physical Layer Convergence Procedure (PLCP) frame in a Very High Throughput (VHT) Wireless Local Area Network (WLAN) system includes generating a MAC Protocol Data Unit (MPDU) to be transmitted to a destination station (STA), generating a PLCP Protocol Data Unit (PPDU) by adding a PLCP header, including an L-SIG field containing control information for a legacy STA and a VHT-SIG field containing control information for a VHT STA, to the MPDU, and transmitting the PPDU to the destination STA. A constellation applied to some of Orthogonal Frequency Division Multiplex (OFDM) symbols of the VHT-SIG field is obtained by rotating a constellation applied to an OFDM symbol of the L-SIG field.
Abstract:
A base station apparatus for transmitting a reference signal in a wireless communication system is provided in which a processor generates the same sequence for resource elements (REs) allocated to each layer for reference signal transmission and spreads or covers Walsh codes for a user equipment-specific reference signal sequence such that sequences generated for the REs can be orthogonal to each other on a time axis. The Walsh code spreading or covering by the processor is applied on a frequency axis based on a plurality of resource blocks (RBs) or based on a pair of RBs such that mutually different sequences having mutually different sequence values can be mapped between RBs or between pairs of RBs. A transmission module transmits the reference signal, to which the generated reference signal sequence is applied to user equipment via each layer.
Abstract:
A method of transmitting a sounding reference signal includes generating a physical uplink control channel (PUCCH) carrying uplink control information on a subframe, the subframe comprising a plurality of SC-FDMA (single carrier-frequency division multiple access) symbols, wherein the uplink control information is punctured on one SC-FDMA symbol in the subframe, and transmitting simultaneously the uplink control information on the PUCCH and a sounding reference signal on the punctured SC-FDMA symbol. The uplink control information and the sounding reference signal can be simultaneously transmitted without affecting a single carrier characteristic.
Abstract:
A method and device for receiving a data block in a wireless communication system, the method performed by a receiver. The method includes: receiving a physical layer protocol data unit (PPDU) from a transmitter over an operating channel, the PPDU including a signal field, a Very High Throughput-Signal-A (VHT-SIG-A) field, a Very High Throughput-Signal-B (VHT-SIG-B) field and a padded data block, generating a first data block by removing zero or more physical padding bits from the padded data block in a physical layer; and generating a second data block by removing zero or more Medium Access Control (MAC) padding bits from the first data block in a MAC layer.
Abstract:
A method and apparatus are described for transmitting data. The method includes generating, by an access point (AP), a Physical Layer Protocol Data Unit (PPDU) including a signal field and a data field, and transmitting, by the AP, the PPDU to a station. The signal field includes a reception target indicator and an identifier field. The reception target indicator indicates whether a target of the PPDU is the AP or the station. The identifier field includes a local AP identifier identifying the AP when the reception target indicator indicates that the target of the PPDU is the station.
Abstract:
A method of transmitting signals including determining, per each of the component carriers, transmission power of at least one channel for simultaneous transmission, in such a way that a total transmission power of the at least one channel does not exceed a maximum transmission power configured for a corresponding component carrier; and checking whether a total transmission power of channels over the multiple component carriers for the simultaneous transmission exceeds a total maximum transmission power configured for the communication apparatus or not. If the total transmission power of the channels exceeds the total maximum transmission power configured for the communication apparatus, transmission power of at least one PUSCH among the channels is adjusted in such a way that an adjusted total transmission power over the multiple component carriers does not exceed the total maximum transmission power.
Abstract:
A method and device for link adaptation in a wireless local area network system, are discussed. The method may include receiving, by a responding station, from a requesting station, a requesting Physical layer Protocol Data Unit (PPDU) for requesting a modulation and coding scheme (MCS) feedback via a plurality of spatial streams, the requesting PPDU including an MCS request (MRQ) field that is set to one to request the responding station to provide the MCS feedback; and transmitting, by the responding station, to the requesting station, the MCS feedback including a recommended MCS field and a recommended stream field. The recommended MCS field indicates a recommended MCS, the recommended stream field indicates a number of at least one recommended spatial stream, and the number of the at least one recommended spatial stream is less than a number of the plurality of spatial streams used for the requesting PPDU.
Abstract:
Methods and devices for transmitting or receiving data in a wireless local area network are provided. The method in one embodiment includes transmitting, by a transmitter, a first long training field (LTF) to a receiver; transmitting, by the transmitter, a very high throughput (VHT)-SIG-A field to the receiver; transmitting, by a transmitter, a second LTF for multiple input multiple output (MIMO) channel estimation to the receiver; transmitting, by the transmitter, a VHT-SIG-B field to the receiver; and transmitting, by the transmitter, a data field to the receiver, wherein the first LTF, the VHT-SIG-A field, the second LTF, the VHT-SIG-B field and the data field are sequentially transmitted, and wherein the second LTF and the data field are mapped to at least one spatial stream based on a mapping matrix but the first LTF and the VHT SIG-A field are not mapped to the at least one spatial stream.