Abstract:
Video compression and decompression techniques are disclosed that provide improved bandwidth control for video compression and decompression systems. In particular, video coding and decoding techniques quantize input video in multiple dimensions. According to these techniques, pixel residuals may be generated from a comparison of an array of input data to an array of prediction data. The pixel residuals may be quantized in a first dimension. After the quantization, the quantized pixel residuals may be transformed to an array of transform coefficients. The transform coefficients may be quantized in a second dimension and entropy coded. Decoding techniques invert these processes. In still other embodiments, multiple quantizers may be provided upstream of the transform stage, either in parallel or in cascade, which provide greater flexibility to video coders to quantize data in different dimensions in an effort to balance the competing interest in compression efficiency and quality of reconstructed video.
Abstract:
System and methods for improved playback of a video stream are presented. Video snippets are identified that include a number of consecutive frames for playback. Snippets may be evenly temporally spaced in the video stream or may be content adaptive. Then the first frame of a snippet may be selected as the first frame of a scene or other appropriate stopping point. Scene detection, object detection, motion detection, video metadata, or other information generated during encoding or decoding of the video stream may aid in appropriate snippet selection.
Abstract:
System and methods for improved playback of a video stream are presented. Video snippets are identified that include a number of consecutive frames for playback. Snippets may be evenly temporally spaced in the video stream or may be content adaptive. Then the first frame of a snippet may be selected as the first frame of a scene or other appropriate stopping point. Scene detection, object detection, motion detection, video metadata, or other information generated during encoding or decoding of the video stream may aid in appropriate snippet selection.
Abstract:
Image and video processing techniques are disclosed for processing components of a color space individually by determining limits for each component based on the relationship between each component in a color space. These limits may then be used to clip each component such that the component values are within the determined range for that component. In this manner, more efficient processing of images and/or video may be achieved.
Abstract:
A video coding system may include an encoder performs motion-compensated prediction on a video signal in a second format converted from an input format of the video signal. The video coding system may also include a decoder to decode portions of the encoded video, and a filtering system that filters portions of the decoded video, for example, by deblocking filtering or SAO filtering, using parameters derived from the video signal in the input format. A prediction system may include another format converter that converts the decoded video to the input format. The prediction system may select parameters of the motion-compensated prediction based at least in part on a comparison of the video signal in the input format to decoded video in the input format.
Abstract:
Video coding systems and methods protect against banding artifacts in decoded image content. According to the method, a video coder may identify, from content of pixel blocks of a frame of video data, which pixel blocks are likely to exhibit banding artifacts from the video coding/decoding processes. The video coder may assemble regions of the frame that are likely to exhibit banding artifacts based on the identified pixel blocks' locations with respect to each other. The video coder may apply anti-banding processing to pixel blocks within one or more of the identified regions and, thereafter, may code the processed frame by a compression operation.
Abstract:
Judder artifacts are remedied in video coding system by employing frame rate conversion at an encoder. According to the disclosure, a source video sequence may be coded as base layer coded video at a first frame rate. An encoder may identify a portion of the coded video sequence that likely will exhibit judder effects when decoded. For those portions that likely will exhibit judder effects, video data representing the portion of the source video may be coded at a higher frame rate than a frame rate of the coded base layer data as enhancement layer data. Moreover, an encoder may generate metadata representing “FRC hints”—techniques that a decoder should employ when performing decoder-side frame rate conversion. An encoding terminal may transmit the base layer coded video and either the enhancement layer coded video or the FRC hints to a decoder. Thus, encoder infrastructure may mitigate against judder artifacts that may arise during decoding.
Abstract:
A scalable coding system codes video as a base layer representation and an enhancement layer representation. A base layer coder may code an LDR representation of a source video. A predictor may predict an HDR representation of the source video from the coded base layer data. A comparator may generate prediction residuals which represent a difference between an HDR representation of the source video and the predicted HDR representation of the source video. A quantizer may quantize the residuals down to an LDR representation. An enhancement layer coder may code the LDR residuals. In other embodiments, the enhancement layer coder may code LDR-converted HDR video directly.
Abstract:
Systems and methods are provided for processing high quality video data, such as data having a higher than standard bit depth, a high dynamic range, or a wide or custom color gamut, to be compatible with conventional encoders and decoders without significant loss of quality. High quality data is encoded into a plurality of layers with a base layer having the standard quality data and one or more higher quality layers. Decoding systems and methods may map the base layer to the dynamic range or color gamut of the enhancement layer, combine the layers, and map the combined layers to a dynamic range or color gamut appropriate for the target display. Each of the standard quality and the high quality data may be encoded as a plurality of tiers of increasing quality and reference lower level tiers as sources of prediction during predictive coding.
Abstract:
YCbCr image data may be dithered and converted into RGB data shown on a 8-bit or other bit display. Dither methods and image processors are provided which generate the banding artifact free image data during this process. Some methods and image processors may applying a stronger dither having a same mean with a larger variance to the image data before it is converted to RGB data. Others methods and image processors may calculate a quantization or encoding error and diffuse the calculated error among one or more neighboring pixel blocks.